
Database alignment: fundamental limits and
efficient algorithms

Negar Kiyavash
École Polytechnique Fédérale de Lausanne

Joint work with
Daniel Cullina - Penn State

Osman Emre Dai - Georgia Tech

November 11th, 2021

Motivation
We are subject to ubiquitous data collection.

Motivation
We are subject to ubiquitous data collection.

• Diverse data sources
- Data junction might offer great benefits

• Data junction often not directly possible
(E.g. anonymized data)

• Correlation among data
- Possibility of non-obvious alignment and inference

• Risks on privacy
- Crucial to understand conditions that allow or prevent privacy
breaches

Motivation
We are subject to ubiquitous data collection.

• Diverse data sources
- Data junction might offer great benefits

• Data junction often not directly possible
(E.g. anonymized data)

• Correlation among data
- Possibility of non-obvious alignment and inference

• Risks on privacy
- Crucial to understand conditions that allow or prevent privacy
breaches

Motivation
We are subject to ubiquitous data collection.

• Diverse data sources
- Data junction might offer great benefits

• Data junction often not directly possible
(E.g. anonymized data)

• Correlation among data
- Possibility of non-obvious alignment and inference

• Risks on privacy
- Crucial to understand conditions that allow or prevent privacy
breaches

Motivation
We are subject to ubiquitous data collection.

• Diverse data sources
- Data junction might offer great benefits

• Data junction often not directly possible
(E.g. anonymized data)

• Correlation among data
- Possibility of non-obvious alignment and inference

• Risks on privacy
- Crucial to understand conditions that allow or prevent privacy
breaches

Alignment problem

The alignment problem studies the scenario where

• multiple data sources are present,

• there are ‘users’ whose data is available from each source,

• correspondence between data sources is
obfuscated or unknown,

• it is possible to identify the correspondences
if the correlation between data is strong enough.

Data Structure # 1 Data Structure # 2

Alignment problem

The alignment problem studies the scenario where

• multiple data sources are present,

• there are ‘users’ whose data is available from each source,

• correspondence between data sources is
obfuscated or unknown,

• it is possible to identify the correspondences
if the correlation between data is strong enough.

Data Structure # 1 Data Structure # 2

Alignment problem

The alignment problem studies the scenario where

• multiple data sources are present,

• there are ‘users’ whose data is available from each source,

• correspondence between data sources is
obfuscated or unknown,

• it is possible to identify the correspondences
if the correlation between data is strong enough.

Data Structure # 1 Data Structure # 2

Alignment problem

The alignment problem studies the scenario where

• multiple data sources are present,

• there are ‘users’ whose data is available from each source,

• correspondence between data sources is
obfuscated or unknown,

• it is possible to identify the correspondences
if the correlation between data is strong enough.

Data Structure # 1 Data Structure # 2

Alignment Problem

Structure of data

• Data associated to single users: database alignment
E.g. medical records

• Interactions between users and objects: bipartite alignment
E.g. customer movie ratings

• Interactions among users: graph alignment
E.g. connections on social media websites

• Or any combination of these

Database

Bigraph Graph

Alignment Problem

Structure of data

• Data associated to single users: database alignment
E.g. medical records

• Interactions between users and objects: bipartite alignment
E.g. customer movie ratings

• Interactions among users: graph alignment
E.g. connections on social media websites

• Or any combination of these

Database Bigraph

Graph

Alignment Problem

Structure of data

• Data associated to single users: database alignment
E.g. medical records

• Interactions between users and objects: bipartite alignment
E.g. customer movie ratings

• Interactions among users: graph alignment
E.g. connections on social media websites

• Or any combination of these

Database Bigraph Graph

Alignment Problem

Structure of data

• Data associated to single users: database alignment
E.g. medical records

• Interactions between users and objects: bipartite alignment
E.g. customer movie ratings

• Interactions among users: graph alignment
E.g. connections on social media websites

• Or any combination of these

Database Bigraph Graph

Illustrative example

Bipartite alignment: Movie ratings

• Netflix prize dataset
User IDs, movie IDs, movie ratings

• IMDB user ratings
Usernames , movie names, movie ratings

Illustrative example

Bipartite alignment: Movie ratings

• Netflix prize dataset
User IDs, movie IDs, movie ratings

• IMDB user ratings
Usernames , movie names, movie ratings

Illustrative example

Bipartite alignment: Movie ratings

• Netflix prize dataset
User IDs, movie IDs, movie ratings

• IMDB user ratings
Usernames , movie names, movie ratings

Illustrative example

• Common for IMDB users to register with full name

• Such users may avoid publicly rating certain movies of interest.

• Movie interests may reveal insight on personal information.

• Political views
• Religious beliefs
• Sexual orientation

• It was shown that many Netflix user IDs can be matched with
public IMDB profiles. [1]

• Netflix faced class action lawsuit and canceled sequal to
competition.

1Arvind Narayanan and Vitaly Shmatikov, ”How To Break Anonymity of the
Netflix Prize Dataset,” S&P 2006

Illustrative example

• Common for IMDB users to register with full name

• Such users may avoid publicly rating certain movies of interest.

• Movie interests may reveal insight on personal information.

• Political views
• Religious beliefs
• Sexual orientation

• It was shown that many Netflix user IDs can be matched with
public IMDB profiles. [1]

• Netflix faced class action lawsuit and canceled sequal to
competition.

1Arvind Narayanan and Vitaly Shmatikov, ”How To Break Anonymity of the
Netflix Prize Dataset,” S&P 2006

Illustrative example

• Common for IMDB users to register with full name

• Such users may avoid publicly rating certain movies of interest.

• Movie interests may reveal insight on personal information.

• Political views
• Religious beliefs
• Sexual orientation

• It was shown that many Netflix user IDs can be matched with
public IMDB profiles. [1]

• Netflix faced class action lawsuit and canceled sequal to
competition.

1Arvind Narayanan and Vitaly Shmatikov, ”How To Break Anonymity of the
Netflix Prize Dataset,” S&P 2006

Illustrative example

• Common for IMDB users to register with full name

• Such users may avoid publicly rating certain movies of interest.

• Movie interests may reveal insight on personal information.
• Political views

• Religious beliefs
• Sexual orientation

• It was shown that many Netflix user IDs can be matched with
public IMDB profiles. [1]

• Netflix faced class action lawsuit and canceled sequal to
competition.

1Arvind Narayanan and Vitaly Shmatikov, ”How To Break Anonymity of the
Netflix Prize Dataset,” S&P 2006

Illustrative example

• Common for IMDB users to register with full name

• Such users may avoid publicly rating certain movies of interest.

• Movie interests may reveal insight on personal information.
• Political views
• Religious beliefs

• Sexual orientation

• It was shown that many Netflix user IDs can be matched with
public IMDB profiles. [1]

• Netflix faced class action lawsuit and canceled sequal to
competition.

1Arvind Narayanan and Vitaly Shmatikov, ”How To Break Anonymity of the
Netflix Prize Dataset,” S&P 2006

Illustrative example

• Common for IMDB users to register with full name

• Such users may avoid publicly rating certain movies of interest.

• Movie interests may reveal insight on personal information.
• Political views
• Religious beliefs
• Sexual orientation

• It was shown that many Netflix user IDs can be matched with
public IMDB profiles. [1]

• Netflix faced class action lawsuit and canceled sequal to
competition.

1Arvind Narayanan and Vitaly Shmatikov, ”How To Break Anonymity of the
Netflix Prize Dataset,” S&P 2006

Illustrative example

• Common for IMDB users to register with full name

• Such users may avoid publicly rating certain movies of interest.

• Movie interests may reveal insight on personal information.
• Political views
• Religious beliefs
• Sexual orientation

• It was shown that many Netflix user IDs can be matched with
public IMDB profiles. [1]

• Netflix faced class action lawsuit and canceled sequal to
competition.

1Arvind Narayanan and Vitaly Shmatikov, ”How To Break Anonymity of the
Netflix Prize Dataset,” S&P 2006

Illustrative example

• Common for IMDB users to register with full name

• Such users may avoid publicly rating certain movies of interest.

• Movie interests may reveal insight on personal information.
• Political views
• Religious beliefs
• Sexual orientation

• It was shown that many Netflix user IDs can be matched with
public IMDB profiles. [1]

• Netflix faced class action lawsuit and canceled sequal to
competition.

1Arvind Narayanan and Vitaly Shmatikov, ”How To Break Anonymity of the
Netflix Prize Dataset,” S&P 2006

Database alignment

Correlated database model

Database: (unordered) set of features, each associated with a user

Database BDatabase A

�

�

�

independent

and

identically

distributed

jointly

distributed

independent

and

identically

distributed

independent

Correlated database model

Pair of databases with correlated data
Some users might not be present on both databases.

Database BDatabase A

�

�

�

independent

and

identically

distributed

jointly

distributed

independent

and

identically

distributed

independent

Correlated database model

Features in a database are i.i.d.

Database BDatabase A

�

�

�

independent

and

identically

distributed

jointly

distributed

independent

and

identically

distributed

independent

Correlated database model

Features associated with the same user are jointly distributed.

Database BDatabase A

�

�

�

independent

and

identically

distributed

jointly

distributed

independent

and

identically

distributed

independent

Correlated database model

Features associated with the same user are jointly distributed.
Each pair is i.i.d.

Database BDatabase A

�

�

�

independent

and

identically

distributed

jointly

distributed

independent

and

identically

distributed

independent

Correlated database model

Features of a user are independent from all other features.

Database BDatabase A

�

�

�

independent

and

identically

distributed

jointly

distributed

independent

and

identically

distributed

independent

Likelihood function

U and V: Sets of user identifiers.

M : Mapping between identifiers
Given some mapping M :

• WM = {(�,•), (�,•)}: pairs mapped by M

• UM = {�,�}: mapped users from A

• VM = {•,•}: mapped users from B

Database BDatabase A

�

�

�

U
V

M

YX

Likelihood function

U and V: Sets of user identifiers.
M : Mapping between identifiers

Given some mapping M :

• WM = {(�,•), (�,•)}: pairs mapped by M

• UM = {�,�}: mapped users from A

• VM = {•,•}: mapped users from B

Database BDatabase A

�

�

�

U
V

M

YX

Likelihood function

U and V: Sets of user identifiers.

M : Mapping between identifiers

Given some mapping M :

• WM = {(�,•), (�,•)}: pairs mapped by M

• UM = {�,�}: mapped users from A

• VM = {•,•}: mapped users from B

Database BDatabase A

�

�

�

U
V

M

YX

Likelihood function

• X = A(�): arbitrary feature from database A

• Y = B(•): arbitrary feature from database B

• fX , fY : marginal pdfs (or pmfs) of features

• fXY |M : joint pdf (or pmf) of features of a user, given M

The distributions are known.

Database BDatabase A

�

�

�

U
V

M

YX

Likelihood function

• X = A(�): arbitrary feature from database A

• Y = B(•): arbitrary feature from database B

• fX , fY : marginal pdfs (or pmfs) of features

• fXY |M : joint pdf (or pmf) of features of a user, given M

The distributions are known.

Database BDatabase A

�

�

�

U
V

M

YX

Likelihood function

• X = A(u): arbitrary feature from database A

• Y = B(v): arbitrary feature from database B

• fX , fY : marginal pdfs (or pmfs) of features

• fXY |M : joint pdf (or pmf) of features of a user, given M

Then the log likelihood of databases A, B given M is

∑
(u,v)∈WM

log fXY |M
(
A(u), B(v)

)
+

∑
u∈U\UM

log fX
(
A(u)

)
+

∑
v∈V\VM

log fY
(
B(v)

)

Likelihood function

∑
(u,v)∈WM

log fXY |M
(
A(u), B(v)

)
+

∑
u∈U\UM

log fX
(
A(u)

)
+

∑
v∈V\VM

log fY
(
B(v)

)
This can be rewritten as∑

(u,v)∈WM

log
fXY |M

(
A(u), B(v)

)
fX
(
A(u)

)
fY
(
B(v)

)
+
∑
u∈U

log fX
(
A(u)

)
+
∑
v∈V

log fY
(
B(v)

)

Maximum likelihood estimation

∑
(u,v)∈WM

log
fXY |M

(
A(u), B(v)

)
fX
(
A(u)

)
fY
(
B(v)

)
+
∑
u∈U

log fX
(
A(u)

)
+
∑
v∈V

log fY
(
B(v)

)

The last two terms do not depend on M .

We only need to consider the first term to maximize likelihood.

Maximum likelihood estimation

∑
(u,v)∈WM

log
fXY |M

(
A(u), B(v)

)
fX
(
A(u)

)
fY
(
B(v)

)

G ∈ RU×V :

Information density matrix s.t. Gu,v = log
fXY |M

(
A(u),B(v)

)
fX

(
A(u)

)
fY

(
B(v)

)
M ∈ {0, 1}U×V :
Matrix encoding of mapping M s.t. Mu,v = 1 ⇐⇒ M maps (u, v)

The summation can be written as an inner product:

∑
(u,v)∈WM

log
fXY |M

(
A(u),B(v)

)
fX
(
A(u)

)
fY
(
B(v)

) = 〈G,M〉

Maximum likelihood estimation

∑
(u,v)∈WM

log
fXY |M

(
A(u), B(v)

)
fX
(
A(u)

)
fY
(
B(v)

)
G ∈ RU×V :

Information density matrix s.t. Gu,v = log
fXY |M

(
A(u),B(v)

)
fX

(
A(u)

)
fY

(
B(v)

)

M ∈ {0, 1}U×V :
Matrix encoding of mapping M s.t. Mu,v = 1 ⇐⇒ M maps (u, v)

The summation can be written as an inner product:

∑
(u,v)∈WM

log
fXY |M

(
A(u),B(v)

)
fX
(
A(u)

)
fY
(
B(v)

) = 〈G,M〉

Maximum likelihood estimation

∑
(u,v)∈WM

log
fXY |M

(
A(u), B(v)

)
fX
(
A(u)

)
fY
(
B(v)

)
G ∈ RU×V :

Information density matrix s.t. Gu,v = log
fXY |M

(
A(u),B(v)

)
fX

(
A(u)

)
fY

(
B(v)

)
M ∈ {0, 1}U×V :
Matrix encoding of mapping M s.t. Mu,v = 1 ⇐⇒ M maps (u, v)

The summation can be written as an inner product:

∑
(u,v)∈WM

log
fXY |M

(
A(u),B(v)

)
fX
(
A(u)

)
fY
(
B(v)

) = 〈G,M〉

Maximum likelihood estimation

∑
(u,v)∈WM

log
fXY |M

(
A(u), B(v)

)
fX
(
A(u)

)
fY
(
B(v)

)
G ∈ RU×V :

Information density matrix s.t. Gu,v = log
fXY |M

(
A(u),B(v)

)
fX

(
A(u)

)
fY

(
B(v)

)
M ∈ {0, 1}U×V :
Matrix encoding of mapping M s.t. Mu,v = 1 ⇐⇒ M maps (u, v)

The summation can be written as an inner product:

∑
(u,v)∈WM

log
fXY |M

(
A(u),B(v)

)
fX
(
A(u)

)
fY
(
B(v)

) = 〈G,M〉

Maximum likelihood estimation

• G is a function of the random databases A and B and is
computable.

• M is a (partial) permutation matrix.

• If |M | is known, maximizing 〈G,M〉 is equivalent to the
(unbalanced) linear assignment problem.

• This can be solved using the Hungarian algorithm in
O
(
|U| · |V| · |M |

)
-time [2].

• Therefore maximum likelihood estimation is possible in
polynomial time.

2Lyle Ramshaw and Robert E. Tarjan, On minimum-cost assignments
inunbalanced bipartite graphs, HP Labs 2012

Maximum likelihood estimation

• G is a function of the random databases A and B and is
computable.

• M is a (partial) permutation matrix.

• If |M | is known, maximizing 〈G,M〉 is equivalent to the
(unbalanced) linear assignment problem.

• This can be solved using the Hungarian algorithm in
O
(
|U| · |V| · |M |

)
-time [2].

• Therefore maximum likelihood estimation is possible in
polynomial time.

2Lyle Ramshaw and Robert E. Tarjan, On minimum-cost assignments
inunbalanced bipartite graphs, HP Labs 2012

Maximum likelihood estimation

• G is a function of the random databases A and B and is
computable.

• M is a (partial) permutation matrix.

• If |M | is known, maximizing 〈G,M〉 is equivalent to the
(unbalanced) linear assignment problem.

• This can be solved using the Hungarian algorithm in
O
(
|U| · |V| · |M |

)
-time [2].

• Therefore maximum likelihood estimation is possible in
polynomial time.

2Lyle Ramshaw and Robert E. Tarjan, On minimum-cost assignments
inunbalanced bipartite graphs, HP Labs 2012

Maximum likelihood estimation

• G is a function of the random databases A and B and is
computable.

• M is a (partial) permutation matrix.

• If |M | is known, maximizing 〈G,M〉 is equivalent to the
(unbalanced) linear assignment problem.

• This can be solved using the Hungarian algorithm in
O
(
|U| · |V| · |M |

)
-time [2].

• Therefore maximum likelihood estimation is possible in
polynomial time.

2Lyle Ramshaw and Robert E. Tarjan, On minimum-cost assignments
inunbalanced bipartite graphs, HP Labs 2012

Maximum likelihood estimation

• G is a function of the random databases A and B and is
computable.

• M is a (partial) permutation matrix.

• If |M | is known, maximizing 〈G,M〉 is equivalent to the
(unbalanced) linear assignment problem.

• This can be solved using the Hungarian algorithm in
O
(
|U| · |V| · |M |

)
-time [2].

• Therefore maximum likelihood estimation is possible in
polynomial time.

2Lyle Ramshaw and Robert E. Tarjan, On minimum-cost assignments
inunbalanced bipartite graphs, HP Labs 2012

Other estimators

MLE optimizes over all mappings.
Simpler and faster approaches exist for aligning small subset.

Other algorithms:

Other estimators

MLE optimizes over all mappings.
Simpler and faster approaches exist for aligning small subset.
Other algorithms:

Maximum row alignment

• Given user in database A, find feature in database B.

• Ignore all other features in A.
Pick feature in B that maximizes likelihood.

• Equivalent to picking the max entry in a row of G.

Other estimators

MLE optimizes over all mappings.
Simpler and faster approaches exist for aligning small subset.
Other algorithms:

Maximum row alignment

• Given user in database A, find feature in database B.

• Ignore all other features in A.
Pick feature in B that maximizes likelihood.

• Equivalent to picking the max entry in a row of G.

Other estimators

MLE optimizes over all mappings.
Simpler and faster approaches exist for aligning small subset.
Other algorithms:

Maximum row alignment

• Given user in database A, find feature in database B.

• Ignore all other features in A.
Pick feature in B that maximizes likelihood.

• Equivalent to picking the max entry in a row of G.

Other estimators

MLE optimizes over all mappings.
Simpler and faster approaches exist for aligning small subset.
Other algorithms:

Maximum row alignment

• Given user in database A, find feature in database B.

• Ignore all other features in A.
Pick feature in B that maximizes likelihood.

• Equivalent to picking the max entry in a row of G.

Other estimators

MLE optimizes over all mappings.
Simpler and faster approaches exist for aligning small subset.
Other algorithms:

Thresholding

• Decide if given feature pair is correlated.

• Perform likelihood-ratio test with some threshold.

• Equivalent to accepting if corresponding entry in G is above
some threshold.

Other estimators

MLE optimizes over all mappings.
Simpler and faster approaches exist for aligning small subset.
Other algorithms:

Thresholding

• Decide if given feature pair is correlated.

• Perform likelihood-ratio test with some threshold.

• Equivalent to accepting if corresponding entry in G is above
some threshold.

Other estimators

MLE optimizes over all mappings.
Simpler and faster approaches exist for aligning small subset.
Other algorithms:

Thresholding

• Decide if given feature pair is correlated.

• Perform likelihood-ratio test with some threshold.

• Equivalent to accepting if corresponding entry in G is above
some threshold.

Other estimators

MLE optimizes over all mappings.
Simpler and faster approaches exist for aligning small subset.
Other algorithms:

Thresholding

• Decide if given feature pair is correlated.

• Perform likelihood-ratio test with some threshold.

• Equivalent to accepting if corresponding entry in G is above
some threshold.

Database alignment
Results

Finite alphabet databases

• Features in A and B take values from finite alphabets X and Y.

• Critical information theoretical measure: I◦2

Asymptotic case: |M | = |U| = |V| = n→∞
• Achievability: [3] MLE finds the correct mapping with

probability 1− o(1) as long as

I◦2 ≥ 2 log n+ ω(1) [3].

• Converse: [3] Any algorithm fails to find the correct mapping
with probability 1− o(1) if

I◦2 ≤ 2 log n(1− Ω(1)) [3].

3Daniel Cullina, Prateek Mittal and Negar Kiyavash, Fundamental limits of
database alignment, ISIT 2018

Finite alphabet databases

• Features in A and B take values from finite alphabets X and Y.

• Critical information theoretical measure: I◦2

Asymptotic case: |M | = |U| = |V| = n→∞
• Achievability: [3] MLE finds the correct mapping with

probability 1− o(1) as long as

I◦2 ≥ 2 log n+ ω(1) [3].

• Converse: [3] Any algorithm fails to find the correct mapping
with probability 1− o(1) if

I◦2 ≤ 2 log n(1− Ω(1)) [3].

3Daniel Cullina, Prateek Mittal and Negar Kiyavash, Fundamental limits of
database alignment, ISIT 2018

Finite alphabet databases

• Features in A and B take values from finite alphabets X and Y.

• Critical information theoretical measure: I◦2

Asymptotic case: |M | = |U| = |V| = n→∞

• Achievability: [3] MLE finds the correct mapping with
probability 1− o(1) as long as

I◦2 ≥ 2 log n+ ω(1) [3].

• Converse: [3] Any algorithm fails to find the correct mapping
with probability 1− o(1) if

I◦2 ≤ 2 log n(1− Ω(1)) [3].

3Daniel Cullina, Prateek Mittal and Negar Kiyavash, Fundamental limits of
database alignment, ISIT 2018

Finite alphabet databases

• Features in A and B take values from finite alphabets X and Y.

• Critical information theoretical measure: I◦2

Asymptotic case: |M | = |U| = |V| = n→∞
• Achievability: [3] MLE finds the correct mapping with

probability 1− o(1) as long as

I◦2 ≥ 2 log n+ ω(1) [3].

• Converse: [3] Any algorithm fails to find the correct mapping
with probability 1− o(1) if

I◦2 ≤ 2 log n(1− Ω(1)) [3].

3Daniel Cullina, Prateek Mittal and Negar Kiyavash, Fundamental limits of
database alignment, ISIT 2018

Finite alphabet databases

• Features in A and B take values from finite alphabets X and Y.

• Critical information theoretical measure: I◦2

Asymptotic case: |M | = |U| = |V| = n→∞
• Achievability: [3] MLE finds the correct mapping with

probability 1− o(1) as long as

I◦2 ≥ 2 log n+ ω(1) [3].

• Converse: [3] Any algorithm fails to find the correct mapping
with probability 1− o(1) if

I◦2 ≤ 2 log n(1− Ω(1)) [3].

3Daniel Cullina, Prateek Mittal and Negar Kiyavash, Fundamental limits of
database alignment, ISIT 2018

Finite alphabet databases

What is I◦2?

• When |M | = |U| = |V|, the smallest number of errors the
estimator makes is 2.
(If one user is mapped to a wrong user, then the same holds for
that second user.)

• Consider two mappings m and m′ that differ only for two pairs of
users:
m maps u1 ∼ v1 and u2 ∼ v2.
m′ maps u1 ∼ v2 and u2 ∼ v1.

• I◦2 is the Bhattacharyya distance between the distribution of
the databases under m and under m′.

Finite alphabet databases

What is I◦2?

• When |M | = |U| = |V|, the smallest number of errors the
estimator makes is 2.
(If one user is mapped to a wrong user, then the same holds for
that second user.)

• Consider two mappings m and m′ that differ only for two pairs of
users:
m maps u1 ∼ v1 and u2 ∼ v2.
m′ maps u1 ∼ v2 and u2 ∼ v1.

• I◦2 is the Bhattacharyya distance between the distribution of
the databases under m and under m′.

Finite alphabet databases

What is I◦2?

• When |M | = |U| = |V|, the smallest number of errors the
estimator makes is 2.
(If one user is mapped to a wrong user, then the same holds for
that second user.)

• Consider two mappings m and m′ that differ only for two pairs of
users:
m maps u1 ∼ v1 and u2 ∼ v2.
m′ maps u1 ∼ v2 and u2 ∼ v1.

• I◦2 is the Bhattacharyya distance between the distribution of
the databases under m and under m′.

Finite alphabet databases

What is I◦2?

• When |M | = |U| = |V|, the smallest number of errors the
estimator makes is 2.
(If one user is mapped to a wrong user, then the same holds for
that second user.)

• Consider two mappings m and m′ that differ only for two pairs of
users:
m maps u1 ∼ v1 and u2 ∼ v2.
m′ maps u1 ∼ v2 and u2 ∼ v1.

• I◦2 is the Bhattacharyya distance between the distribution of
the databases under m and under m′.

Finite alphabet databases

• Features in A and B take values from finite alphabets X and Y.

• Critical information theoretical measure: I◦2

Consider the case where |M | = |U| = |V| = n→∞
• Achievability: [3] MLE finds the correct mapping with

probability 1− o(1) as long as

I◦2 ≥ 2 log n+ ω(1) [3].

• Converse: [3] Any algorithm fails to find the correct mapping
with probability 1− o(1) if

I◦2 ≤ 2 log n(1− Ω(1)) [3].

3Daniel Cullina, Prateek Mittal and Negar Kiyavash, Fundamental limits of
database alignment, ISIT 2018

Gaussian databases

• Features in A and B take values in vector spaces.

• Features of a user are multivariate Gaussian.

• Critical information theoretical measure:
Mutual information between correlated features IXY
IXY is equal to the Bhattacharyya distance between the
distribution of databases for ‘adjacent’ mappings.
Asymptotic case: |M | = |U| = |V| = n→∞

• Achievability: [4] MLE finds the correct mapping with
probability 1− o(1) as long as

IXY ≥ 2 log n+ ω(1) [4].

• Converse: [4] Any algorithm fails to find the correct mapping
with probability 1− o(1) if

IXY ≤ 2 log n(1− Ω(1)) [4].

4Osman Dai, Daniel Cullina, and Negar Kiyavash, Database alignment with
Gaussian features, AISTATS 2019

Gaussian databases

• Features in A and B take values in vector spaces.

• Features of a user are multivariate Gaussian.

• Critical information theoretical measure:
Mutual information between correlated features IXY

IXY is equal to the Bhattacharyya distance between the
distribution of databases for ‘adjacent’ mappings.
Asymptotic case: |M | = |U| = |V| = n→∞

• Achievability: [4] MLE finds the correct mapping with
probability 1− o(1) as long as

IXY ≥ 2 log n+ ω(1) [4].

• Converse: [4] Any algorithm fails to find the correct mapping
with probability 1− o(1) if

IXY ≤ 2 log n(1− Ω(1)) [4].

4Osman Dai, Daniel Cullina, and Negar Kiyavash, Database alignment with
Gaussian features, AISTATS 2019

Gaussian databases

• Features in A and B take values in vector spaces.

• Features of a user are multivariate Gaussian.

• Critical information theoretical measure:
Mutual information between correlated features IXY
IXY is equal to the Bhattacharyya distance between the
distribution of databases for ‘adjacent’ mappings.

Asymptotic case: |M | = |U| = |V| = n→∞
• Achievability: [4] MLE finds the correct mapping with

probability 1− o(1) as long as

IXY ≥ 2 log n+ ω(1) [4].

• Converse: [4] Any algorithm fails to find the correct mapping
with probability 1− o(1) if

IXY ≤ 2 log n(1− Ω(1)) [4].

4Osman Dai, Daniel Cullina, and Negar Kiyavash, Database alignment with
Gaussian features, AISTATS 2019

Gaussian databases

• Features in A and B take values in vector spaces.

• Features of a user are multivariate Gaussian.

• Critical information theoretical measure:
Mutual information between correlated features IXY
IXY is equal to the Bhattacharyya distance between the
distribution of databases for ‘adjacent’ mappings.
Asymptotic case: |M | = |U| = |V| = n→∞

• Achievability: [4] MLE finds the correct mapping with
probability 1− o(1) as long as

IXY ≥ 2 log n+ ω(1) [4].

• Converse: [4] Any algorithm fails to find the correct mapping
with probability 1− o(1) if

IXY ≤ 2 log n(1− Ω(1)) [4].

4Osman Dai, Daniel Cullina, and Negar Kiyavash, Database alignment with
Gaussian features, AISTATS 2019

Gaussian databases

• These results consider estimation a success only if it gives the
exact mapping.

• What if the estimate is not exact but the ratio of errors is
vanishingly small?

Gaussian databases

• These results consider estimation a success only if it gives the
exact mapping.

• What if the estimate is not exact but the ratio of errors is
vanishingly small?

Gaussian databases

• Exact alignment
• Achievability: If IXY ≥ 2 log n+ ω(1), then

MLE finds the correct mapping with probability 1− o(1) [4].
• Converse: If IXY ≤ 2 log n(1− Ω(1)), then

any algorithm fails to find the correct mapping with probability
1− o(1) [4].

• Almost-exact alignment
• Achievability: If IXY ≥ log n+ ω(1), then

MLE makes o(n) errors in expectation [4].
• Converse: If IXY ≤ log n(1− Ω(1)), then

any algorithm makes Ω(n) errors in expectation [4].

4Osman Dai, Daniel Cullina, and Negar Kiyavash, Database alignment with
Gaussian features, AISTATS 2019

Gaussian alignment
Asymptotic regime: n→∞

x-axis: mutual information y-axis: error exponent
IXY = x log n E[#errors] = ny

0 1 2 3 4 5 6 7 8

−0.5

0

0.5

1

IXY
logn

lo
g
E[
#

er
ro
rs
]

lo
g
n

low correlation high correlation

o(1) errors - perfect alignment

constant number of errors

O(ny) errors - almost-perfect alignment

constant fraction of errors

Gaussian alignment
Converse:

• IXY ≤ 2 log n(1− Ω(1)) =⇒ E[#errors] ≥ Ω(1)

• x < 2 =⇒ y ≥ 0

0 1 2 3 4 5 6 7 8

−0.5

0

0.5

1

IXY
logn

lo
g
E[
#

er
ro
rs
]

lo
g
n

Gaussian alignment
Converse:

• IXY ≤ log n(1− Ω(1)) =⇒ E[#errors] ≥ Ω(n)

• x < 1 =⇒ y ≥ 1

+

0 1 2 3 4 5 6 7 8

−0.5

0

0.5

1

IXY
logn

lo
g
E[
#

er
ro
rs
]

lo
g
n

Gaussian alignment
Achievability (MLE - high correlation):

• IXY ≥ 2 log n+ ω(1)
=⇒ E[#errors] ≤ 2 exp(2 log n− IXY)(1 + o(1))

• x > 2 =⇒ y ≤ 2− x

0 1 2 3 4 5 6 7 8

−0.5

0

0.5

1

IXY
logn

lo
g
E[
#

er
ro
rs
]

lo
g
n

MLE

Gaussian alignment
Achievability (MLE - low correlation) [5]:

• x > 1 =⇒ (x− 1)2 + (2y − 1)2 ≤ 1

[5] Osman Dai, Daniel Cullina, and Negar Kiyavash, Achievability of
nearly-exact alignment for correlated Gaussian databases, ISIT 2020

0 1 2 3 4 5 6 7 8

−0.5

0

0.5

1

IXY
logn

lo
g
E[
#

er
ro
rs
]

lo
g
n

MLE

Gaussian alignment
Achievability (maximum row alignment):

• High correlation: x ≥ 2 =⇒ y < 2− x
2

• Low correlation: 2 ≥ x > 1 =⇒ y < 1− (1−
√
x)

2

0 1 2 3 4 5 6 7 8

−0.5

0

0.5

1

IXY
logn

lo
g
E[
#

er
ro
rs
]

lo
g
n

MLE
max row

Gaussian alignment
Achievability (thresholding):

• x > 1 =⇒ y < 1− x
4 · (1− 1/x)2

0 1 2 3 4 5 6 7 8

−0.5

0

0.5

1

IXY
logn

lo
g
E[
#

er
ro
rs
]

lo
g
n

MLE
max row
thresholding

Gaussian alignment
All three algorithms make o(n) errors right above the converse (Con-
sistent with [6]).

[6] Farhad Shirani, Siddharth Garg, and Elza Erkip on discrete features,
A Concentration of Measure Approach to Database De-anonymization, ISIT
2019

0 1 2 3 4 5 6 7 8

−0.5

0

0.5

1

IXY
logn

lo
g
E[
#

er
ro
rs
]

lo
g
n

MLE
max row
thresholding

Gaussian alignment
All three algorithms make o(n) errors right above the converse (Con-
sistent with [6]).

[6] Farhad Shirani, Siddharth Garg, and Elza Erkip on discrete features,
A Concentration of Measure Approach to Database De-anonymization, ISIT
2019

0 1 2 3 4 5 6 7 8

−0.5

0

0.5

1

IXY
logn

lo
g
E[
#

er
ro
rs
]

lo
g
n

MLE
max row
thresholding

Database alignment

• Understanding the problem of database alignment provides
insight on information theoretic quantities that characterize
limits to alignment in general.

Outline of analysis
High-correlation achievability for MLE

Decomposition of misalignments
Graph representation Matrix representation

Components ←→ Blocks

u1

u2

u3

u4

u5

v1

v2

v3

v4

v5

v′

1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

m

m

m m′

1 0 0 0 0 0

0 0 1 0 0 0

0 1 0 0 0 0

0 0 0 0 1 0

0 0 0 0 0 1

m′

0 0 0 0 0 0

0 −1 +1 0 0 0

0 +1 −1 0 0 0

0 0 0 −1 +1 0

0 0 0 0 −1 +1

m′ −m

Decomposition of misalignments
Graph representation Matrix representation

Components ←→ Blocks

u1

u2

u3

u4

u5

v1

v2

v3

v4

v5

v′

1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

m

m

m m′

1 0 0 0 0 0

0 0 1 0 0 0

0 1 0 0 0 0

0 0 0 0 1 0

0 0 0 0 0 1

m′

0 0 0 0 0 0

0 −1 +1 0 0 0

0 +1 −1 0 0 0

0 0 0 −1 +1 0

0 0 0 0 −1 +1

m′ −m

Decomposition of misalignments
Graph representation Matrix representation

Components ←→ Blocks

u1

u2

u3

u4

u5

v1

v2

v3

v4

v5

v′

1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

m

m

m m′

1 0 0 0 0 0

0 0 1 0 0 0

0 1 0 0 0 0

0 0 0 0 1 0

0 0 0 0 0 1

m′

0 0 0 0 0 0

0 −1 +1 0 0 0

0 +1 −1 0 0 0

0 0 0 −1 +1 0

0 0 0 0 −1 +1

m′ −m

Decomposition of misalignments
Graph representation Matrix representation

Components ←→ Blocks

u1

u2

u3

u4

u5

v1

v2

v3

v4

v5

v′

1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

m

m

m m′

1 0 0 0 0 0

0 0 1 0 0 0

0 1 0 0 0 0

0 0 0 0 1 0

0 0 0 0 0 1

m′

0 0 0 0 0 0

0 −1 +1 0 0 0

0 +1 −1 0 0 0

0 0 0 −1 +1 0

0 0 0 0 −1 +1

m′ −m

Decomposition of misalignments

• Consider m′ such that m′ −m induces multiple blocks:

m′ −m =

[
H1 0
0 H2

]
.

• There exist m′1 and m′2 for which

m′1 −m =

[
H1 0
0 0

]
and m′2 −m =

[
0 0
0 H2

]
. These correspond

to a ‘partition’ of the components that correspond to the blocks.

• The difference in 〈G, ·〉 decomposes:〈
G,

[
H1 0
0 H2

]〉
=

〈
G,

[
H1 0
0 0

]〉
+

〈
G,

[
0 0
0 H2

]〉
〈G,m′ −m〉 = 〈G,m′1 −m〉+ 〈G,m′2 −m〉

• Therefore, if 〈G,m′〉 − 〈G,m〉 = 〈G,m′ −m〉 ≥ 0,

then either 〈G,m′1 −m〉 ≥ 0
or 〈G,m′2 −m〉 ≥ 0.

Decomposition of misalignments

• Consider m′ such that m′ −m induces multiple blocks:

m′ −m =

[
H1 0
0 H2

]
.

• There exist m′1 and m′2 for which

m′1 −m =

[
H1 0
0 0

]
and m′2 −m =

[
0 0
0 H2

]
. These correspond

to a ‘partition’ of the components that correspond to the blocks.

• The difference in 〈G, ·〉 decomposes:〈
G,

[
H1 0
0 H2

]〉
=

〈
G,

[
H1 0
0 0

]〉
+

〈
G,

[
0 0
0 H2

]〉
〈G,m′ −m〉 = 〈G,m′1 −m〉+ 〈G,m′2 −m〉

• Therefore, if 〈G,m′〉 − 〈G,m〉 = 〈G,m′ −m〉 ≥ 0,

then either 〈G,m′1 −m〉 ≥ 0
or 〈G,m′2 −m〉 ≥ 0.

Decomposition of misalignments

• Consider m′ such that m′ −m induces multiple blocks:

m′ −m =

[
H1 0
0 H2

]
.

• There exist m′1 and m′2 for which

m′1 −m =

[
H1 0
0 0

]
and m′2 −m =

[
0 0
0 H2

]
. These correspond

to a ‘partition’ of the components that correspond to the blocks.

• The difference in 〈G, ·〉 decomposes:〈
G,

[
H1 0
0 H2

]〉
=

〈
G,

[
H1 0
0 0

]〉
+

〈
G,

[
0 0
0 H2

]〉
〈G,m′ −m〉 = 〈G,m′1 −m〉+ 〈G,m′2 −m〉

• Therefore, if 〈G,m′〉 − 〈G,m〉 = 〈G,m′ −m〉 ≥ 0,

then either 〈G,m′1 −m〉 ≥ 0
or 〈G,m′2 −m〉 ≥ 0.

Decomposition of misalignments

• Consider m′ such that m′ −m induces multiple blocks:

m′ −m =

[
H1 0
0 H2

]
.

• There exist m′1 and m′2 for which

m′1 −m =

[
H1 0
0 0

]
and m′2 −m =

[
0 0
0 H2

]
. These correspond

to a ‘partition’ of the components that correspond to the blocks.

• The difference in 〈G, ·〉 decomposes:〈
G,

[
H1 0
0 H2

]〉
=

〈
G,

[
H1 0
0 0

]〉
+

〈
G,

[
0 0
0 H2

]〉
〈G,m′ −m〉 = 〈G,m′1 −m〉+ 〈G,m′2 −m〉

• Therefore, if 〈G,m′〉 − 〈G,m〉 = 〈G,m′ −m〉 ≥ 0,

then either 〈G,m′1 −m〉 ≥ 0
or 〈G,m′2 −m〉 ≥ 0.

Decomposition of misalignments

• If 〈G,m′〉 − 〈G,m〉 = 〈G,m′ −m〉 ≥ 0,

then either 〈G,m′1 −m〉 ≥ 0
or 〈G,m′2 −m〉 ≥ 0.

• Then we can limit our attention to
‘single-component’/‘single-block’ misalignments.

Decomposition of misalignments

• If 〈G,m′〉 − 〈G,m〉 = 〈G,m′ −m〉 ≥ 0,

then either 〈G,m′1 −m〉 ≥ 0
or 〈G,m′2 −m〉 ≥ 0.

• Then we can limit our attention to
‘single-component’/‘single-block’ misalignments.

Decomposition of misalignments

• Let m be the true mapping and m′ some false mapping.

• Every user is mapped at most once by m and at most once by m′,
i.e. every node has at most one blue and at most one red edge.

• Then all components are paths or cycles.

Decomposition of misalignments

• Let m be the true mapping and m′ some false mapping.

• Every user is mapped at most once by m and at most once by m′,
i.e. every node has at most one blue and at most one red edge.

• Then all components are paths or cycles.

Decomposition of misalignments

• Let m be the true mapping and m′ some false mapping.

• Every user is mapped at most once by m and at most once by m′,
i.e. every node has at most one blue and at most one red edge.

• Then all components are paths or cycles.

Decomposition of misalignments

• All components are paths or cycles.

u1

u2

v1

v2

I

u1

u2

v1

v2

v′II

u1

u2

v1

v2

III

u1

u2

u′

v1

v2

v′IV

• I: cycle III: m-dominant path
II: balanced path IV: m′-dominant path

• If M = m matches all users, i.e. |M | = |U| = |V|,
then there are no paths and all components are cycles.

Decomposition of misalignments

• All components are paths or cycles.

u1

u2

v1

v2

I

u1

u2

v1

v2

v′II

u1

u2

v1

v2

III

u1

u2

u′

v1

v2

v′IV

• I: cycle III: m-dominant path
II: balanced path IV: m′-dominant path

• If M = m matches all users, i.e. |M | = |U| = |V|,
then there are no paths and all components are cycles.

Error bounds

Assume |M | = |U| = |V|, so only consider cycle-inducing false
mappings.
If m′ a false mapping that induces a cycle of length 4
with true mapping M = m, then the Chernoff bound gives us exactly:

• Finite alphabet database:

P[〈G,m′ −m〉 ≥ 0|M = m] ≤ exp (−I◦2)

• Gaussian database:

P[〈G,m′ −m〉 ≥ 0|M = m] ≤ exp (−IXY)

Henceforth we use to I without subscript to refer to either I◦2 or IXY .

Error bounds

Assume |M | = |U| = |V|, so only consider cycle-inducing false
mappings.
If m′ a false mapping that induces a cycle of length 4
with true mapping M = m, then the Chernoff bound gives us exactly:

• Finite alphabet database:

P[〈G,m′ −m〉 ≥ 0|M = m] ≤ exp (−I◦2)

• Gaussian database:

P[〈G,m′ −m〉 ≥ 0|M = m] ≤ exp (−IXY)

Henceforth we use to I without subscript to refer to either I◦2 or IXY .

Error bounds

Assume |M | = |U| = |V|, so only consider cycle-inducing false
mappings.
If m′ a false mapping that induces a cycle of length 4
with true mapping M = m, then the Chernoff bound gives us exactly:

• Finite alphabet database:

P[〈G,m′ −m〉 ≥ 0|M = m] ≤ exp (−I◦2)

• Gaussian database:

P[〈G,m′ −m〉 ≥ 0|M = m] ≤ exp (−IXY)

Henceforth we use to I without subscript to refer to either I◦2 or IXY .

Error bounds

Assume |M | = |U| = |V|, so only consider cycle-inducing false
mappings.
If m′ a false mapping that induces a cycle of length 2δ
with true mapping M = m,
then Chernoff bound upper bounded by:
• Finite alphabet database:

P[〈G,m′ −m〉 ≥ 0|M = m] ≤ exp

(
−I◦2 ·

δ

2

)
• Gaussian database:

P[〈G,m′ −m〉 ≥ 0|M = m] ≤ exp

(
−IXY ·

δ

2

)

Henceforth we use to I without subscript to refer to either I◦2 or IXY .

Error bounds

Assume |M | = |U| = |V|, so only consider cycle-inducing false
mappings.
If m′ a false mapping that induces a cycle of length 2δ
with true mapping M = m,
then Chernoff bound upper bounded by:
• Finite alphabet database:

P[〈G,m′ −m〉 ≥ 0|M = m] ≤ exp

(
−I◦2 ·

δ

2

)
• Gaussian database:

P[〈G,m′ −m〉 ≥ 0|M = m] ≤ exp

(
−IXY ·

δ

2

)

Henceforth we use to I without subscript to refer to either I◦2 or IXY .

Error bounds

• |M | = |U| = |V| = n
There are

(
n
δ

)
(δ − 1)! false mappings m′ that induce a cycle of

length 2δ on m.(
n
δ

)
(δ − 1)! is upper bounded by nδ

δ .

• Let m̂ denote the ML estimate.
The expected number of cycles of length 2δ
contained in m̂−m is bounded by

nδ

δ
exp

(
−δ · I

2

)
=

1

δ
exp

(
−δ

2
(I − 2 log n)

)
• A cycle of length 2δ results in δ errors.

The total number of errors in expectation is upper bounded by:

n∑
δ=2

exp

(
−δ

2
(I − 2 log n)

)

Error bounds

• |M | = |U| = |V| = n
There are

(
n
δ

)
(δ − 1)! false mappings m′ that induce a cycle of

length 2δ on m.(
n
δ

)
(δ − 1)! is upper bounded by nδ

δ .

• Let m̂ denote the ML estimate.
The expected number of cycles of length 2δ
contained in m̂−m is bounded by

nδ

δ
exp

(
−δ · I

2

)
=

1

δ
exp

(
−δ

2
(I − 2 log n)

)

• A cycle of length 2δ results in δ errors.
The total number of errors in expectation is upper bounded by:

n∑
δ=2

exp

(
−δ

2
(I − 2 log n)

)

Error bounds

• |M | = |U| = |V| = n
There are

(
n
δ

)
(δ − 1)! false mappings m′ that induce a cycle of

length 2δ on m.(
n
δ

)
(δ − 1)! is upper bounded by nδ

δ .

• Let m̂ denote the ML estimate.
The expected number of cycles of length 2δ
contained in m̂−m is bounded by

nδ

δ
exp

(
−δ · I

2

)
=

1

δ
exp

(
−δ

2
(I − 2 log n)

)
• A cycle of length 2δ results in δ errors.

The total number of errors in expectation is upper bounded by:

n∑
δ=2

exp

(
−δ

2
(I − 2 log n)

)

Error bounds

• The total number of errors in expectation is upper bounded by:

n∑
δ=2

exp

(
−δ

2
(I − 2 log n)

)

• If I > 2 log n,
the expression is upper bounded by a2

1−a ≤ O(1),

where a = exp
(
− I−2 logn

2

)
.

• If I > 2 log n+ ω(1), this converges to o(1).

Error bounds

• The total number of errors in expectation is upper bounded by:

n∑
δ=2

exp

(
−δ

2
(I − 2 log n)

)
• If I > 2 log n,

the expression is upper bounded by a2

1−a ≤ O(1),

where a = exp
(
− I−2 logn

2

)
.

• If I > 2 log n+ ω(1), this converges to o(1).

Error bounds

• The total number of errors in expectation is upper bounded by:

n∑
δ=2

exp

(
−δ

2
(I − 2 log n)

)
• If I > 2 log n,

the expression is upper bounded by a2

1−a ≤ O(1),

where a = exp
(
− I−2 logn

2

)
.

• If I > 2 log n+ ω(1), this converges to o(1).

Graph alignment

Graph alignment

In graph alignment, the data consists of edge information.

The correlated graph model:

• Edges are i.i.d. random variables.

• Edges are more likely to appear in both graphs,
than to appear in one but not the other.

Network # 1 Network # 2

Graph alignment

In graph alignment, the data consists of edge information.

The correlated graph model:

• Edges are i.i.d. random variables.

• Edges are more likely to appear in both graphs,
than to appear in one but not the other.

Network # 1 Network # 2

Graph alignment

In graph alignment, the data consists of edge information.

The correlated graph model:

• Edges are i.i.d. random variables.

• Edges are more likely to appear in both graphs,
than to appear in one but not the other.

Network # 1 Network # 2

Graph alignment

In graph alignment, the data consists of edge information.

The correlated graph model:

• Edges are i.i.d. random variables.

• Edges are more likely to appear in both graphs,
than to appear in one but not the other.

Network # 1 Network # 2

Graph alignment

Classical scenario: Edges are Bernouilli random variables taking
values in {edge,non-edge}.

Other settings of interest:

• Arbitrary discrete alphabet.

Allows modelling of different types of connections in
networks.

This is a generalization of the Bernouilli case.

Graph alignment

Classical scenario: Edges are Bernouilli random variables taking
values in {edge,non-edge}.

Other settings of interest:

• Arbitrary discrete alphabet.

Allows modelling of different types of connections in
networks.

This is a generalization of the Bernouilli case.

Graph alignment

Classical scenario: Edges are Bernouilli random variables taking
values in {edge,non-edge}.

Other settings of interest:

• Arbitrary discrete alphabet.

Allows modelling of different types of connections in
networks.

This is a generalization of the Bernouilli case.

Graph alignment

Classical scenario: Edges are Bernouilli random variables taking
values in {edge,non-edge}.

Other settings of interest:

• Arbitrary discrete alphabet.

Allows modelling different types of connections in networks.

This is a generalization of the Bernouilli case.

• Continuous vector space.

One case of particular interest is that of graphs with Gaussian
weights [7], [8].

7Zhou Fan, Cheng Mao, Yihong Wu and Jiaming Xu, Spectral Graph Matching
and Regularized Quadratic Relaxations I:The Gaussian Model, 2019

8Luca Ganassali, Sharp Threshold for Alignment of Graph Databases with
Gaussian Weights 2020

Graph alignment - likelihood function

• fX , fY : marginal pdfs (or pmfs) of edges in two graphs

• fXY : joint pdf (or pmf) of correlated edge pair

• WM ⊂ U × V: vertex pairs mapped by M

Let
(S
2

)
denote set of all subsets of S of size 2.

Proxy for log-likelihood of graphs:

∑
{(ui,vi),(uj ,vj)}∈(WM

2)

log
fXY (A{ui, uj}, B{vi, vj})
fX(A{ui, uj})fY (B{vi, vj})

Graph alignment - likelihood function

• fX , fY : marginal pdfs (or pmfs) of edges in two graphs

• fXY : joint pdf (or pmf) of correlated edge pair

• WM ⊂ U × V: vertex pairs mapped by M

Let
(S
2

)
denote set of all subsets of S of size 2.

Proxy for log-likelihood of graphs:

∑
{(ui,vi),(uj ,vj)}∈(WM

2)

log
fXY (A{ui, uj}, B{vi, vj})
fX(A{ui, uj})fY (B{vi, vj})

=
1

2

−→
M>G

−→
M

where G ∈ R(U×V)×(U×V) information density matrix,

and
−→
M ∈ {0, 1}(U×V) encodes the mapping M .

Graph alignment - MLE

MLE for graph alignment is equivalent to the following optimization:

max−→m
−→m>G−→m s.t.

∑
v

m(u,v) = 1 ∀u ∈ U∑
u

m(u,v) = 1 ∀v ∈ V

−→m ∈ {0, 1}(U×V)

Databases vs Graphs

Database alignment

MLE given by linear
optimization:

max〈G,m〉 = tr(G>m)
over m ∈ {0, 1}U×V with
row and column sums equal to 1.

∼ linear assignment problem
O(n3)

Graph alignment

MLE given by quadratic
optimization:

max−→m>G−→m = tr(G−→m−→m>)
over −→m ∈ {0, 1}(U×V) with ‘row’
and ‘column’ sums equal to 1.

∼ quadratic assignment problem
NP-hard

Graph alignment
Most well studied model: Correlated Erdős-Rényi

• Pair of graphs GA = (V ;EA) and GB = (V ;EB) on |V | = n
vertices.

• Each graph Erdős-Rényi with average degree np.

• Intersection of graphs (V ;EA ∩ EB) is Erdős-Rényi with avg.
deg. nps
Difference of graphs (V ;EA \ EB) is Erdős-Rényi with avg. deg.
np(1− s)

Generate graphs by independently generating edge random variable
for each pair of vertices.

Pr(edge in EA ∩ EB) = ps

Pr(edge in EA \ EB) = p(1− s)
Pr(edge in EB \ EA) = p(1− s)

Pr(edge not in EA ∪ EB) = 1− p(2− s)

Graph alignment
Most well studied model: Correlated Erdős-Rényi

• Pair of graphs GA = (V ;EA) and GB = (V ;EB) on |V | = n
vertices.

• Each graph Erdős-Rényi with average degree np.

• Intersection of graphs (V ;EA ∩ EB) is Erdős-Rényi with avg.
deg. nps
Difference of graphs (V ;EA \ EB) is Erdős-Rényi with avg. deg.
np(1− s)

Generate graphs by independently generating edge random variable
for each pair of vertices.

Pr(edge in EA ∩ EB) = ps

Pr(edge in EA \ EB) = p(1− s)
Pr(edge in EB \ EA) = p(1− s)

Pr(edge not in EA ∪ EB) = 1− p(2− s)

Graph alignment
Most well studied model: Correlated Erdős-Rényi

• Pair of graphs GA = (V ;EA) and GB = (V ;EB) on |V | = n
vertices.

• Each graph Erdős-Rényi with average degree np.

• Intersection of graphs (V ;EA ∩ EB) is Erdős-Rényi with avg.
deg. nps
Difference of graphs (V ;EA \ EB) is Erdős-Rényi with avg. deg.
np(1− s)

Generate graphs by independently generating edge random variable
for each pair of vertices.

Pr(edge in EA ∩ EB) = ps

Pr(edge in EA \ EB) = p(1− s)
Pr(edge in EB \ EA) = p(1− s)

Pr(edge not in EA ∪ EB) = 1− p(2− s)

Graph alignment
Most well studied model: Correlated Erdős-Rényi

• Pair of graphs GA = (V ;EA) and GB = (V ;EB) on |V | = n
vertices.

• Each graph Erdős-Rényi with average degree np.

• Intersection of graphs (V ;EA ∩ EB) is Erdős-Rényi with avg.
deg. nps

Difference of graphs (V ;EA \ EB) is Erdős-Rényi with avg. deg.
np(1− s)

Generate graphs by independently generating edge random variable
for each pair of vertices.

Pr(edge in EA ∩ EB) = ps

Pr(edge in EA \ EB) = p(1− s)
Pr(edge in EB \ EA) = p(1− s)

Pr(edge not in EA ∪ EB) = 1− p(2− s)

Graph alignment
Most well studied model: Correlated Erdős-Rényi

• Pair of graphs GA = (V ;EA) and GB = (V ;EB) on |V | = n
vertices.

• Each graph Erdős-Rényi with average degree np.

• Intersection of graphs (V ;EA ∩ EB) is Erdős-Rényi with avg.
deg. nps
Difference of graphs (V ;EA \ EB) is Erdős-Rényi with avg. deg.
np(1− s)

Generate graphs by independently generating edge random variable
for each pair of vertices.

Pr(edge in EA ∩ EB) = ps

Pr(edge in EA \ EB) = p(1− s)
Pr(edge in EB \ EA) = p(1− s)

Pr(edge not in EA ∪ EB) = 1− p(2− s)

Graph alignment
Most well studied model: Correlated Erdős-Rényi

• Pair of graphs GA = (V ;EA) and GB = (V ;EB) on |V | = n
vertices.

• Each graph Erdős-Rényi with average degree np.

• Intersection of graphs (V ;EA ∩ EB) is Erdős-Rényi with avg.
deg. nps
Difference of graphs (V ;EA \ EB) is Erdős-Rényi with avg. deg.
np(1− s)

Generate graphs by independently generating edge random variable
for each pair of vertices.

Pr(edge in EA ∩ EB) = ps

Pr(edge in EA \ EB) = p(1− s)
Pr(edge in EB \ EA) = p(1− s)

Pr(edge not in EA ∪ EB) = 1− p(2− s)

Graph alignment
Results

Graph alignment

y-axis: strength of signal

log ps
logn

0

−1

log p(1−s)
logn 0−1−2

log ps
logn

−1
constant average degree in intersection graph

average degree Θ(ny) in intersection graph

average degree o(1) in intersection graph

−1

0

log p(1−s)
logn 0−1−2

constant

number

of edge

differences

between

graphs

constant

number

of edge

differences

per

vertex

o(1) edge

differences

-

noise-free

noisy very

noisy

positive correlation regime

neg.

corr.

−1
2

Graph alignment
x-axis: strength of noise y-axis: strength of signal

log ps
logn

0

−1

log p(1−s)
logn 0−1−2

log ps
logn

−1
constant average degree in intersection graph

average degree Θ(ny) in intersection graph

average degree o(1) in intersection graph

−1

0

log p(1−s)
logn 0−1−2

constant

number

of edge

differences

between

graphs

constant

number

of edge

differences

per

vertex

o(1) edge

differences

-

noise-free

noisy very

noisy

positive correlation regime

neg.

corr.

−1
2

Graph alignment
Graphs are positively correlated if

Pr(in neither) Pr(in both) > Pr(in EA \ EB) Pr(in EA \ EB)

⇐⇒ [1− p(2− s)]ps > p2(1− s)2

⇐⇒ s > p

⇐⇒ y

x
=

log ps/ log n

log p(1− s)/ log n
>

log p2

log p(1− p)

In the sparse regime p ≤ o(1), this corresponds to

y

x
=

log ps/ log n

log p(1− s)/ log n
> 2.

Graph alignment
Graphs are positively correlated if

Pr(in neither) Pr(in both) > Pr(in EA \ EB) Pr(in EA \ EB)

⇐⇒ [1− p(2− s)]ps > p2(1− s)2

⇐⇒ s > p

⇐⇒ y

x
=

log ps/ log n

log p(1− s)/ log n
>

log p2

log p(1− p)

In the sparse regime p ≤ o(1), this corresponds to

y

x
=

log ps/ log n

log p(1− s)/ log n
> 2.

Graph alignment
Graphs are positively correlated if

Pr(in neither) Pr(in both) > Pr(in EA \ EB) Pr(in EA \ EB)

⇐⇒ [1− p(2− s)]ps > p2(1− s)2

⇐⇒ s > p

⇐⇒ y

x
=

log ps/ log n

log p(1− s)/ log n
>

log p2

log p(1− p)

In the sparse regime p ≤ o(1), this corresponds to

y

x
=

log ps/ log n

log p(1− s)/ log n
> 2.

Graph alignment
Graphs are positively correlated if

Pr(in neither) Pr(in both) > Pr(in EA \ EB) Pr(in EA \ EB)

⇐⇒ [1− p(2− s)]ps > p2(1− s)2

⇐⇒ s > p

⇐⇒ y

x
=

log ps/ log n

log p(1− s)/ log n
>

log p2

log p(1− p)

In the sparse regime p ≤ o(1), this corresponds to

y

x
=

log ps/ log n

log p(1− s)/ log n
> 2.

Graph alignment
Graphs are positively correlated if

Pr(in neither) Pr(in both) > Pr(in EA \ EB) Pr(in EA \ EB)

⇐⇒ [1− p(2− s)]ps > p2(1− s)2

⇐⇒ s > p

⇐⇒ y

x
=

log ps/ log n

log p(1− s)/ log n
>

log p2

log p(1− p)

In the sparse regime p ≤ o(1), this corresponds to

y

x
=

log ps/ log n

log p(1− s)/ log n
> 2.

Graph alignment
We only present results on positively correlated graphs.

log ps
logn

0

−1

log p(1−s)
logn 0−1−2

log ps
logn

−1
constant average degree in intersection graph

average degree Θ(ny) in intersection graph

average degree o(1) in intersection graph

−1

0

log p(1−s)
logn 0−1−2

constant

number

of edge

differences

between

graphs

constant

number

of edge

differences

per

vertex

o(1) edge

differences

-

noise-free

noisy very

noisy

positive correlation regime

neg.

corr.

−1
2

Graph alignment
Noiseless case: p(1− s) ≤ o(n2)

Edward M. Wright - 1971 [9]
Sufficient and necessary condition for noiseless case:
Alignment possible with probability 1− o(1) if and only if

np ≥ log n+ ω(1).

The cut-off corresponds to the line

y =
log ps

log n
= −1 +

log log n

log n
+

log s

log n
= −1± o(1)

[9] Graphs on unlabeled nodes with a given number of edges, Acta
Mathematica 1971

Graph alignment
Noiseless case: p(1− s) ≤ o(n2)

Edward M. Wright - 1971 [9]
Sufficient and necessary condition for noiseless case:
Alignment possible with probability 1− o(1) if and only if

np ≥ log n+ ω(1).

The cut-off corresponds to the line

y =
log ps

log n
= −1 +

log log n

log n
+

log s

log n
= −1± o(1)

[9] Graphs on unlabeled nodes with a given number of edges, Acta
Mathematica 1971

Graph alignment
x-axis: strength of noise y-axis: strength of signal

log ps
logn

0

−1

log p(1−s)
logn 0−1−2

log ps
logn

−1
constant average degree in intersection graph

average degree Θ(ny) in intersection graph

average degree o(1) in intersection graph

−1

0

log p(1−s)
logn 0−1−2

constant

number

of edge

differences

between

graphs

constant

number

of edge

differences

per

vertex

o(1) edge

differences

-

noise-free

noisy very

noisy

positive correlation regime

neg.

corr.

−1
2

Graph alignment
Noiseless case: p(1− s) ≤ o(n2)
Sufficient cond. for polynomial-time alignment:

Polynomial-time algorithms that achieve alignment with probability
1− o(1) if np ≥ log n+ ω(1)

[10] Bla Bollobs, Distinguishing vertices of random graphs,
North-Holland Mathematics Studies 1982

[11] Tomek Czajka and Gopal Pandurangan, Improved random graph
isomorphism, Journal of Discrete Algorithms 2008

Graph alignment
x-axis: strength of noise y-axis: strength of signal

log ps
logn

0

−1

log p(1−s)
logn 0−1−2

log ps
logn

−1
constant average degree in intersection graph

average degree Θ(ny) in intersection graph

average degree o(1) in intersection graph

−1

0

log p(1−s)
logn 0−1−2

constant

number

of edge

differences

between

graphs

constant

number

of edge

differences

per

vertex

o(1) edge

differences

-

noise-free

noisy very

noisy

positive correlation regime

neg.

corr.

−1
2

Graph alignment
Information theoretic bound formulations for sparse regime p = o(1)

• Pedram Pedarsani and Matthias Grossglauser 2011 [12]

Sufficient condition: nps
(

s
2−s

)
≥ 8 log n+ ω(1)

This implies

ps > ω(1/n) and
(ps)2

ps+ 2p(1− s)
> ω(1/n)

For small ps, the latter implies

2 log ps− log p(1− s) > − log n

or

2y − x = −1

[12] Pedram Pedarsani and Matthias Grossglauser, On the Privacy of
Anonymized Networks, SIGKDD 2011

Graph alignment
Information theoretic bound formulations for sparse regime p = o(1)

• Pedram Pedarsani and Matthias Grossglauser 2011 [12]

Sufficient condition: nps
(

s
2−s

)
≥ 8 log n+ ω(1)

This implies

ps > ω(1/n) and
(ps)2

ps+ 2p(1− s)
> ω(1/n)

For small ps, the latter implies

2 log ps− log p(1− s) > − log n

or

2y − x = −1

[12] Pedram Pedarsani and Matthias Grossglauser, On the Privacy of
Anonymized Networks, SIGKDD 2011

Graph alignment
Information theoretic bound formulations for sparse regime p = o(1)

• Pedram Pedarsani and Matthias Grossglauser 2011 [12]

Sufficient condition: nps
(

s
2−s

)
≥ 8 log n+ ω(1)

This implies

ps > ω(1/n) and
(ps)2

ps+ 2p(1− s)
> ω(1/n)

For small ps, the latter implies

2 log ps− log p(1− s) > − log n

or

2y − x = −1

[12] Pedram Pedarsani and Matthias Grossglauser, On the Privacy of
Anonymized Networks, SIGKDD 2011

Graph alignment
x-axis: strength of noise y-axis: strength of signal

log ps
logn

0

−1

log p(1−s)
logn 0−1−2

log ps
logn

−1
constant average degree in intersection graph

average degree Θ(ny) in intersection graph

average degree o(1) in intersection graph

−1

0

log p(1−s)
logn 0−1−2

constant

number

of edge

differences

between

graphs

constant

number

of edge

differences

per

vertex

o(1) edge

differences

-

noise-free

noisy very

noisy

positive correlation regime

neg.

corr.

−1
2

Graph alignment
Information-theoretic bounds for sparse regime p = O(1/ log n)

• Pedram Pedarsani and Matthias Grossglauser 2011 [12]

Sufficient condition: nps
(

s
2−s

)
≥ 8 log n+ ω(1)

• Daniel Cullina and Negar Kiyavash 2016 [13]

Sufficient condition: nps
(

1− p(1−s)√
ps

)2
≥ 2 log n+ ω(1)

Necessary condition: nps > log n(1− Ω(1))

• Daniel Cullina and Negar Kiyavash - 2017 [14]
Sufficient condition: nps ≥ log n+ ω(1)

p(1− s) ≤ O(1/ log n) and p(1−s)√
ps ≤ O(1/ log3/2 n)

[12] Pedram Pedarsani and Matthias Grossglauser , On the Privacy of
Anonymized Networks, SIGKDD 2011

[13] Daniel Cullina and Negar Kiyavash, Improved Achievability and
Converse Bounds for Erdos-Renyi Graph Matching, Sigmetrics 2016

[14] Daniel Cullina and Negar Kiyavash, Exact alignment recovery for
correlated Erdos-Renyi graphs, 2017

Graph alignment
Information-theoretic bounds for sparse regime p = O(1/ log n)

• Pedram Pedarsani and Matthias Grossglauser 2011 [12]

Sufficient condition: nps
(

s
2−s

)
≥ 8 log n+ ω(1)

• Daniel Cullina and Negar Kiyavash 2016 [13]

Sufficient condition: nps
(

1− p(1−s)√
ps

)2
≥ 2 log n+ ω(1)

Necessary condition: nps > log n(1− Ω(1))

• Daniel Cullina and Negar Kiyavash - 2017 [14]
Sufficient condition: nps ≥ log n+ ω(1)

p(1− s) ≤ O(1/ log n) and p(1−s)√
ps ≤ O(1/ log3/2 n)

[12] Pedram Pedarsani and Matthias Grossglauser , On the Privacy of
Anonymized Networks, SIGKDD 2011

[13] Daniel Cullina and Negar Kiyavash, Improved Achievability and
Converse Bounds for Erdos-Renyi Graph Matching, Sigmetrics 2016

[14] Daniel Cullina and Negar Kiyavash, Exact alignment recovery for
correlated Erdos-Renyi graphs, 2017

Graph alignment
Information-theoretic bounds for sparse regime p = O(1/ log n)

• Pedram Pedarsani and Matthias Grossglauser 2011 [12]

Sufficient condition: nps
(

s
2−s

)
≥ 8 log n+ ω(1)

• Daniel Cullina and Negar Kiyavash 2016 [13]

Sufficient condition: nps
(

1− p(1−s)√
ps

)2
≥ 2 log n+ ω(1)

Necessary condition: nps > log n(1− Ω(1))

• Daniel Cullina and Negar Kiyavash - 2017 [14]
Sufficient condition: nps ≥ log n+ ω(1)

p(1− s) ≤ O(1/ log n) and p(1−s)√
ps ≤ O(1/ log3/2 n)

[12] Pedram Pedarsani and Matthias Grossglauser , On the Privacy of
Anonymized Networks, SIGKDD 2011

[13] Daniel Cullina and Negar Kiyavash, Improved Achievability and
Converse Bounds for Erdos-Renyi Graph Matching, Sigmetrics 2016

[14] Daniel Cullina and Negar Kiyavash, Exact alignment recovery for
correlated Erdos-Renyi graphs, 2017

Graph alignment
Information-theoretic bounds for sparse regime p = O(1/ log n)

• Pedram Pedarsani and Matthias Grossglauser - 2011 [12]

Sufficient condition: nps
(

s
2−s

)
≥ 8 log n+ ω(1)

• Daniel Cullina and Negar Kiyavash - 2016 [13]

Sufficient condition: nps
(

1− p(1−s)√
ps

)2
≥ 2 log n+ ω(1)

Necessary condition: nps > log n(1− Ω(1))

• Daniel Cullina and Negar Kiyavash - 2017 [14]
Sufficient condition: nps ≥ log n+ ω(1)

p(1−s)√
ps ≤ O(1/ log3/2 n)

[12] Pedram Pedarsani and Matthias Grossglauser , On the Privacy of
Anonymized Networks, SIGKDD 2011

[13] Daniel Cullina and Negar Kiyavash, Improved Achievability and
Converse Bounds for Erdos-Renyi Graph Matching, Sigmetrics 2016

[14] Daniel Cullina and Negar Kiyavash, Exact alignment recovery for
correlated Erdos-Renyi graphs, 2017

Graph alignment
x-axis: strength of noise y-axis: strength of signal

log ps
logn

0

−1

log p(1−s)
logn 0−1−2

log ps
logn

−1
constant average degree in intersection graph

average degree Θ(ny) in intersection graph

average degree o(1) in intersection graph

−1

0

log p(1−s)
logn 0−1−2

constant

number

of edge

differences

between

graphs

constant

number

of edge

differences

per

vertex

o(1) edge

differences

-

noise-free

noisy very

noisy

positive correlation regime

neg.

corr.

−1
2

Graph alignment
Regime of particular interest:

• Most algorithmic results focus on

− log p ≥ Ω(log n) and − log s ≤ o(log n)

sparse graphs and s does not go to zero too quickly.

• This entire regime of interest is contained on line
y
x = log p+log s

log p+log(1−s) = 1.

Graph alignment
Regime of particular interest:

• Most algorithmic results focus on

− log p ≥ Ω(log n) and − log s ≤ o(log n)

sparse graphs and s does not go to zero too quickly.

• This entire regime of interest is contained on line
y
x = log p+log s

log p+log(1−s) = 1.

Graph alignment
Regime of particular interest:

• Most algorithmic results focus on

− log p ≥ Ω(log n) and − log s ≤ o(log n)

sparse graphs and s does not go to zero too quickly.

• This entire regime of interest is contained on line
y
x = log p+log s

log p+log(1−s) = 1.

Graph alignment
x-axis: strength of noise y-axis: strength of signal

log ps
logn

0

−1

log p(1−s)
logn 0−1−2

log ps
logn

−1
constant average degree in intersection graph

average degree Θ(ny) in intersection graph

average degree o(1) in intersection graph

−1

0

log p(1−s)
logn 0−1−2

constant

number

of edge

differences

between

graphs

constant

number

of edge

differences

per

vertex

o(1) edge

differences

-

noise-free

noisy very

noisy

positive correlation regime

neg.

corr.

−1
2

Graph alignment

Polynomial-time algorithms for exact alignment in the regime
(1− s) ≤ O(1):

• Jian Ding, Zongming Ma, Yihong Wu and Jiaming Xu [15]
np ≥ (log n)c and (1− s) ≤ (log n)−c

• Zhou Fan, Cheng Mao, Yihong Wu and Jiaming Xu [16]
np ≥ (log n)c and (1− s) ≤ (log n)−c

• Cheng Mao, Mark Rudelson and Konstantin Tikhomirov [17]
np ≥ (log n)c and (1− s) ≤ (log log n)−c

• Cheng Mao, Mark Rudelson and Konstantin Tikhomirov [18]
no(1) ≥ np ≥ log n(1+ε) and (1− s) ≤ min{constant,ε}

15Efficient random graph matching via degree profiles, Probability Theory and
Related Field 2021

16Spectral graph matching and regularized quadratic relaxations II: ErdosRenyi
graphs and universality, 2019

17Random graph matching with improved noise robustness, Conference on
Learning Theory 2021

18Exact Matching of Random Graphs with Constant Correlation, Conference on
Learning Theory 2021

Graph alignment

x-axis: strength of noise y-axis: strength of signal

log ps
logn

0

−1

log p(1−s)
logn 0−1−2 −1

2

Graph alignment

All these polynomial-time algorithms have guarantees in the regime
where s is bounded away from 0.

Quasi-polynomial time algorithm for exact alignment:

• Boaz Barak, Chi-Ning Chou, Zhixian Lei, Tselil Schramm and
Yueqi Sheng [19]
np ≥ no(1) and s ≥ (log n)−o(1)

Unlike the polynomial algorithms, this algorithm allows s→ 0. This
is still within the regime − log s ≤ o(log(n)) and therefore does
guarantee any region to the right of the y = x line.

19(Nearly) Efficient Algorithms for the Graph Matching Problem on Correlated
Random Graphs, Advances in Neural Information Processing Systems 2019

Graph alignment

All these polynomial-time algorithms have guarantees in the regime
where s is bounded away from 0.
Quasi-polynomial time algorithm for exact alignment:

• Boaz Barak, Chi-Ning Chou, Zhixian Lei, Tselil Schramm and
Yueqi Sheng [19]
np ≥ no(1) and s ≥ (log n)−o(1)

Unlike the polynomial algorithms, this algorithm allows s→ 0. This
is still within the regime − log s ≤ o(log(n)) and therefore does
guarantee any region to the right of the y = x line.

19(Nearly) Efficient Algorithms for the Graph Matching Problem on Correlated
Random Graphs, Advances in Neural Information Processing Systems 2019

Graph alignment

All these polynomial-time algorithms have guarantees in the regime
where s is bounded away from 0.
Quasi-polynomial time algorithm for exact alignment:

• Boaz Barak, Chi-Ning Chou, Zhixian Lei, Tselil Schramm and
Yueqi Sheng [19]
np ≥ no(1) and s ≥ (log n)−o(1)

Unlike the polynomial algorithms, this algorithm allows s→ 0.

This
is still within the regime − log s ≤ o(log(n)) and therefore does
guarantee any region to the right of the y = x line.

19(Nearly) Efficient Algorithms for the Graph Matching Problem on Correlated
Random Graphs, Advances in Neural Information Processing Systems 2019

Graph alignment

All these polynomial-time algorithms have guarantees in the regime
where s is bounded away from 0.
Quasi-polynomial time algorithm for exact alignment:

• Boaz Barak, Chi-Ning Chou, Zhixian Lei, Tselil Schramm and
Yueqi Sheng [19]
np ≥ no(1) and s ≥ (log n)−o(1)

Unlike the polynomial algorithms, this algorithm allows s→ 0. This
is still within the regime − log s ≤ o(log(n)) and therefore does
guarantee any region to the right of the y = x line.

19(Nearly) Efficient Algorithms for the Graph Matching Problem on Correlated
Random Graphs, Advances in Neural Information Processing Systems 2019

Graph alignment - partial alignment

• Exact alignment:
No misaligned vertices

• Almost-exact alignment:
Vanishing fraction of misaligned vertices

• Partial alignment:
Constant fraction of misaligned vertices

Graph alignment - partial alignment

• Exact alignment:
No misaligned vertices

• Almost-exact alignment:
Vanishing fraction of misaligned vertices

• Partial alignment:
Constant fraction of misaligned vertices

Graph alignment - partial alignment

• Exact alignment:
No misaligned vertices

• Almost-exact alignment:
Vanishing fraction of misaligned vertices

• Partial alignment:
Constant fraction of misaligned vertices

Graph alignment - partial alignment
Necessary condition:

• Exact alignment [13]

nps > log n(1− Ω(1))

• Almost-exact alignment [20]

nps > O(1)

• Partial alignment [20]

nps > 1

13Daniel Cullina and Negar Kiyavash, Improved Achievability and Converse
Bounds for Erdos-Renyi Graph Matching, Sigmetrics 2016

20Cullina, Daniel, Negar Kiyavash, Prateek Mittal and H. Vincent Poor, Partial
Recovery of Erdos-Renyi Graph Alignment via k-Core Alignment, Sigmetrics 2020

21Luca Ganassali, Marc Lelarge and Laurent Massoulie, Impossibility of Partial
Recovery in the Graph Alignment Problem, Annual Conference on Learning
Theory 2021

Graph alignment - partial alignment
Sufficient condition:

• Exact alignment [13]

nps ≥ log n+ ω(1)

• Almost-exact alignment [20]

nps ≥ ω(1)

• Partial alignment [22]

nps ≥max

{
4,

2 log n

log(s/p)

}
(1 +O(1))

14Daniel Cullina and Negar Kiyavash, Exact alignment recovery for correlated
Erdos-Renyi graphs, 2017

20Cullina, Daniel, Negar Kiyavash, Prateek Mittal and H. Vincent Poor, Partial
Recovery of Erdos-Renyi Graph Alignment via k-Core Alignment, Sigmetrics 2020

22Yihong Wu, Jiaming Xu and Sophie H. Yu, Settling the Sharp Reconstruction
Thresholds of Random Graph Matching, 2021

Graph alignment - dense graphs
Recent work improved the information theoretic bound for dense
graphs with p/s = Θ(1).

Sufficient and necessary conditions:

• Daniel Cullina and Negar Kiyavash - 2016 [13] In the regime
where p ≤ O(1/ log n)

nps
(

1−(1− s)
√
p/s
)2
≥ 2 log n+ ω(1)

nps> log n(1− Ω(1))

• Yihong Wu, Jiaming Xu and Sophie H. Yu - 2021 [21]

nps
(

1−
√
p/s
)2
≥ log n(1 + o(1))

nps
(

1−
√
p/s
)2
> log n(1− o(1))

13Improved Achievability and Converse Bounds for Erdos-Renyi Graph
Matching, Sigmetrics 2016

22Yihong Wu, Jiaming Xu and Sophie H. Yu, Settling the Sharp Reconstruction
Thresholds of Random Graph Matching, 2021

Graph alignment - dense graphs
Recent work improved the information theoretic bound for dense
graphs with p/s = Θ(1).
Sufficient and necessary conditions:

• Daniel Cullina and Negar Kiyavash - 2016 [13] In the regime
where p ≤ O(1/ log n)

nps
(

1−(1− s)
√
p/s
)2
≥ 2 log n+ ω(1)

nps> log n(1− Ω(1))

• Yihong Wu, Jiaming Xu and Sophie H. Yu - 2021 [21]

nps
(

1−
√
p/s
)2
≥ log n(1 + o(1))

nps
(

1−
√
p/s
)2
> log n(1− o(1))

13Improved Achievability and Converse Bounds for Erdos-Renyi Graph
Matching, Sigmetrics 2016

22Yihong Wu, Jiaming Xu and Sophie H. Yu, Settling the Sharp Reconstruction
Thresholds of Random Graph Matching, 2021

Thank you.

