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Alignment problem

The alignment problem studies the scenario where

• multiple data sources are present,

• there are ‘users’ whose data is available from each source,

• correspondence between data sources is
obfuscated or unknown,

• it is possible to identify the correspondences
if the correlation between data is strong enough.
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Illustrative example

• Common for IMDB users to register with full name

• Such users may avoid publicly rating certain movies of interest.

• Movie interests may reveal insight on personal information.

• Political views
• Religious beliefs
• Sexual orientation

• It was shown that many Netflix user IDs can be matched with
public IMDB profiles. [1]

• Netflix faced class action lawsuit and canceled sequal to
competition.

1Arvind Narayanan and Vitaly Shmatikov, ”How To Break Anonymity of the
Netflix Prize Dataset,” S&P 2006



Illustrative example

• Common for IMDB users to register with full name

• Such users may avoid publicly rating certain movies of interest.

• Movie interests may reveal insight on personal information.

• Political views
• Religious beliefs
• Sexual orientation

• It was shown that many Netflix user IDs can be matched with
public IMDB profiles. [1]

• Netflix faced class action lawsuit and canceled sequal to
competition.

1Arvind Narayanan and Vitaly Shmatikov, ”How To Break Anonymity of the
Netflix Prize Dataset,” S&P 2006



Illustrative example

• Common for IMDB users to register with full name

• Such users may avoid publicly rating certain movies of interest.

• Movie interests may reveal insight on personal information.

• Political views
• Religious beliefs
• Sexual orientation

• It was shown that many Netflix user IDs can be matched with
public IMDB profiles. [1]

• Netflix faced class action lawsuit and canceled sequal to
competition.

1Arvind Narayanan and Vitaly Shmatikov, ”How To Break Anonymity of the
Netflix Prize Dataset,” S&P 2006



Illustrative example

• Common for IMDB users to register with full name

• Such users may avoid publicly rating certain movies of interest.

• Movie interests may reveal insight on personal information.
• Political views

• Religious beliefs
• Sexual orientation

• It was shown that many Netflix user IDs can be matched with
public IMDB profiles. [1]

• Netflix faced class action lawsuit and canceled sequal to
competition.

1Arvind Narayanan and Vitaly Shmatikov, ”How To Break Anonymity of the
Netflix Prize Dataset,” S&P 2006



Illustrative example

• Common for IMDB users to register with full name

• Such users may avoid publicly rating certain movies of interest.

• Movie interests may reveal insight on personal information.
• Political views
• Religious beliefs

• Sexual orientation

• It was shown that many Netflix user IDs can be matched with
public IMDB profiles. [1]

• Netflix faced class action lawsuit and canceled sequal to
competition.

1Arvind Narayanan and Vitaly Shmatikov, ”How To Break Anonymity of the
Netflix Prize Dataset,” S&P 2006



Illustrative example

• Common for IMDB users to register with full name

• Such users may avoid publicly rating certain movies of interest.

• Movie interests may reveal insight on personal information.
• Political views
• Religious beliefs
• Sexual orientation

• It was shown that many Netflix user IDs can be matched with
public IMDB profiles. [1]

• Netflix faced class action lawsuit and canceled sequal to
competition.

1Arvind Narayanan and Vitaly Shmatikov, ”How To Break Anonymity of the
Netflix Prize Dataset,” S&P 2006



Illustrative example

• Common for IMDB users to register with full name

• Such users may avoid publicly rating certain movies of interest.

• Movie interests may reveal insight on personal information.
• Political views
• Religious beliefs
• Sexual orientation

• It was shown that many Netflix user IDs can be matched with
public IMDB profiles. [1]

• Netflix faced class action lawsuit and canceled sequal to
competition.

1Arvind Narayanan and Vitaly Shmatikov, ”How To Break Anonymity of the
Netflix Prize Dataset,” S&P 2006



Illustrative example

• Common for IMDB users to register with full name

• Such users may avoid publicly rating certain movies of interest.

• Movie interests may reveal insight on personal information.
• Political views
• Religious beliefs
• Sexual orientation

• It was shown that many Netflix user IDs can be matched with
public IMDB profiles. [1]

• Netflix faced class action lawsuit and canceled sequal to
competition.

1Arvind Narayanan and Vitaly Shmatikov, ”How To Break Anonymity of the
Netflix Prize Dataset,” S&P 2006



Database alignment



Correlated database model

Database: (unordered) set of features, each associated with a user
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Correlated database model

Features of a user are independent from all other features.
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Likelihood function

U and V: Sets of user identifiers.

M : Mapping between identifiers
Given some mapping M :

• WM = {(�,•), (�,•)}: pairs mapped by M

• UM = {�,�}: mapped users from A

• VM = {•,•}: mapped users from B
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Likelihood function

• X = A(�): arbitrary feature from database A

• Y = B(•): arbitrary feature from database B

• fX , fY : marginal pdfs (or pmfs) of features

• fXY |M : joint pdf (or pmf) of features of a user, given M

The distributions are known.
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Likelihood function

• X = A(u): arbitrary feature from database A

• Y = B(v): arbitrary feature from database B

• fX , fY : marginal pdfs (or pmfs) of features

• fXY |M : joint pdf (or pmf) of features of a user, given M

Then the log likelihood of databases A, B given M is
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Maximum likelihood estimation

∑
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The last two terms do not depend on M .

We only need to consider the first term to maximize likelihood.
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Maximum likelihood estimation

• G is a function of the random databases A and B and is
computable.

• M is a (partial) permutation matrix.

• If |M | is known, maximizing 〈G,M〉 is equivalent to the
(unbalanced) linear assignment problem.

• This can be solved using the Hungarian algorithm in
O
(
|U| · |V| · |M |

)
-time [2].

• Therefore maximum likelihood estimation is possible in
polynomial time.

2Lyle Ramshaw and Robert E. Tarjan, On minimum-cost assignments
inunbalanced bipartite graphs, HP Labs 2012



Maximum likelihood estimation

• G is a function of the random databases A and B and is
computable.

• M is a (partial) permutation matrix.

• If |M | is known, maximizing 〈G,M〉 is equivalent to the
(unbalanced) linear assignment problem.

• This can be solved using the Hungarian algorithm in
O
(
|U| · |V| · |M |

)
-time [2].

• Therefore maximum likelihood estimation is possible in
polynomial time.

2Lyle Ramshaw and Robert E. Tarjan, On minimum-cost assignments
inunbalanced bipartite graphs, HP Labs 2012



Maximum likelihood estimation

• G is a function of the random databases A and B and is
computable.

• M is a (partial) permutation matrix.

• If |M | is known, maximizing 〈G,M〉 is equivalent to the
(unbalanced) linear assignment problem.

• This can be solved using the Hungarian algorithm in
O
(
|U| · |V| · |M |

)
-time [2].

• Therefore maximum likelihood estimation is possible in
polynomial time.

2Lyle Ramshaw and Robert E. Tarjan, On minimum-cost assignments
inunbalanced bipartite graphs, HP Labs 2012



Maximum likelihood estimation

• G is a function of the random databases A and B and is
computable.

• M is a (partial) permutation matrix.

• If |M | is known, maximizing 〈G,M〉 is equivalent to the
(unbalanced) linear assignment problem.

• This can be solved using the Hungarian algorithm in
O
(
|U| · |V| · |M |

)
-time [2].

• Therefore maximum likelihood estimation is possible in
polynomial time.

2Lyle Ramshaw and Robert E. Tarjan, On minimum-cost assignments
inunbalanced bipartite graphs, HP Labs 2012



Maximum likelihood estimation

• G is a function of the random databases A and B and is
computable.

• M is a (partial) permutation matrix.

• If |M | is known, maximizing 〈G,M〉 is equivalent to the
(unbalanced) linear assignment problem.

• This can be solved using the Hungarian algorithm in
O
(
|U| · |V| · |M |

)
-time [2].

• Therefore maximum likelihood estimation is possible in
polynomial time.

2Lyle Ramshaw and Robert E. Tarjan, On minimum-cost assignments
inunbalanced bipartite graphs, HP Labs 2012



Other estimators

MLE optimizes over all mappings.
Simpler and faster approaches exist for aligning small subset.

Other algorithms:



Other estimators

MLE optimizes over all mappings.
Simpler and faster approaches exist for aligning small subset.
Other algorithms:

Maximum row alignment

• Given user in database A, find feature in database B.

• Ignore all other features in A.
Pick feature in B that maximizes likelihood.

• Equivalent to picking the max entry in a row of G.



Other estimators

MLE optimizes over all mappings.
Simpler and faster approaches exist for aligning small subset.
Other algorithms:

Maximum row alignment

• Given user in database A, find feature in database B.

• Ignore all other features in A.
Pick feature in B that maximizes likelihood.

• Equivalent to picking the max entry in a row of G.



Other estimators

MLE optimizes over all mappings.
Simpler and faster approaches exist for aligning small subset.
Other algorithms:

Maximum row alignment

• Given user in database A, find feature in database B.

• Ignore all other features in A.
Pick feature in B that maximizes likelihood.

• Equivalent to picking the max entry in a row of G.



Other estimators

MLE optimizes over all mappings.
Simpler and faster approaches exist for aligning small subset.
Other algorithms:

Maximum row alignment

• Given user in database A, find feature in database B.

• Ignore all other features in A.
Pick feature in B that maximizes likelihood.

• Equivalent to picking the max entry in a row of G.



Other estimators

MLE optimizes over all mappings.
Simpler and faster approaches exist for aligning small subset.
Other algorithms:

Thresholding

• Decide if given feature pair is correlated.

• Perform likelihood-ratio test with some threshold.

• Equivalent to accepting if corresponding entry in G is above
some threshold.



Other estimators

MLE optimizes over all mappings.
Simpler and faster approaches exist for aligning small subset.
Other algorithms:

Thresholding

• Decide if given feature pair is correlated.

• Perform likelihood-ratio test with some threshold.

• Equivalent to accepting if corresponding entry in G is above
some threshold.



Other estimators

MLE optimizes over all mappings.
Simpler and faster approaches exist for aligning small subset.
Other algorithms:

Thresholding

• Decide if given feature pair is correlated.

• Perform likelihood-ratio test with some threshold.

• Equivalent to accepting if corresponding entry in G is above
some threshold.



Other estimators

MLE optimizes over all mappings.
Simpler and faster approaches exist for aligning small subset.
Other algorithms:

Thresholding

• Decide if given feature pair is correlated.

• Perform likelihood-ratio test with some threshold.

• Equivalent to accepting if corresponding entry in G is above
some threshold.



Database alignment
Results



Finite alphabet databases

• Features in A and B take values from finite alphabets X and Y.

• Critical information theoretical measure: I◦2

Asymptotic case: |M | = |U| = |V| = n→∞
• Achievability: [3] MLE finds the correct mapping with

probability 1− o(1) as long as

I◦2 ≥ 2 log n+ ω(1) [3].

• Converse: [3] Any algorithm fails to find the correct mapping
with probability 1− o(1) if

I◦2 ≤ 2 log n(1− Ω(1)) [3].

3Daniel Cullina, Prateek Mittal and Negar Kiyavash, Fundamental limits of
database alignment, ISIT 2018
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Finite alphabet databases

What is I◦2?

• When |M | = |U| = |V|, the smallest number of errors the
estimator makes is 2.
(If one user is mapped to a wrong user, then the same holds for
that second user.)

• Consider two mappings m and m′ that differ only for two pairs of
users:
m maps u1 ∼ v1 and u2 ∼ v2.
m′ maps u1 ∼ v2 and u2 ∼ v1.

• I◦2 is the Bhattacharyya distance between the distribution of
the databases under m and under m′.
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Gaussian databases
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• These results consider estimation a success only if it gives the
exact mapping.

• What if the estimate is not exact but the ratio of errors is
vanishingly small?



Gaussian databases

• These results consider estimation a success only if it gives the
exact mapping.

• What if the estimate is not exact but the ratio of errors is
vanishingly small?



Gaussian databases

• Exact alignment
• Achievability: If IXY ≥ 2 log n+ ω(1), then

MLE finds the correct mapping with probability 1− o(1) [4].
• Converse: If IXY ≤ 2 log n(1− Ω(1)), then

any algorithm fails to find the correct mapping with probability
1− o(1) [4].

• Almost-exact alignment
• Achievability: If IXY ≥ log n+ ω(1), then

MLE makes o(n) errors in expectation [4].
• Converse: If IXY ≤ log n(1− Ω(1)), then

any algorithm makes Ω(n) errors in expectation [4].

4Osman Dai, Daniel Cullina, and Negar Kiyavash, Database alignment with
Gaussian features, AISTATS 2019



Gaussian alignment
Asymptotic regime: n→∞

x-axis: mutual information y-axis: error exponent
IXY = x log n E[#errors] = ny
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Gaussian alignment
Converse:

• IXY ≤ 2 log n(1− Ω(1)) =⇒ E[#errors] ≥ Ω(1)

• x < 2 =⇒ y ≥ 0
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• x < 1 =⇒ y ≥ 1
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Gaussian alignment
Achievability (MLE - high correlation):

• IXY ≥ 2 log n+ ω(1)
=⇒ E[#errors] ≤ 2 exp(2 log n− IXY )(1 + o(1))

• x > 2 =⇒ y ≤ 2− x

0 1 2 3 4 5 6 7 8

−0.5

0

0.5

1

IXY
logn

lo
g
E[
#

er
ro
rs
]

lo
g
n

MLE



Gaussian alignment
Achievability (MLE - low correlation) [5]:

• x > 1 =⇒ (x− 1)2 + (2y − 1)2 ≤ 1

[5] Osman Dai, Daniel Cullina, and Negar Kiyavash, Achievability of
nearly-exact alignment for correlated Gaussian databases, ISIT 2020
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Gaussian alignment
Achievability (maximum row alignment):

• High correlation: x ≥ 2 =⇒ y < 2− x
2

• Low correlation: 2 ≥ x > 1 =⇒ y < 1− (1−
√
x)

2
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Gaussian alignment
Achievability (thresholding):

• x > 1 =⇒ y < 1− x
4 · (1− 1/x)2
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Gaussian alignment
All three algorithms make o(n) errors right above the converse (Con-
sistent with [6]).

[6] Farhad Shirani, Siddharth Garg, and Elza Erkip on discrete features,
A Concentration of Measure Approach to Database De-anonymization, ISIT
2019
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Gaussian alignment
All three algorithms make o(n) errors right above the converse (Con-
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[6] Farhad Shirani, Siddharth Garg, and Elza Erkip on discrete features,
A Concentration of Measure Approach to Database De-anonymization, ISIT
2019
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Database alignment

• Understanding the problem of database alignment provides
insight on information theoretic quantities that characterize
limits to alignment in general.



Outline of analysis
High-correlation achievability for MLE



Decomposition of misalignments
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Decomposition of misalignments

• Consider m′ such that m′ −m induces multiple blocks:

m′ −m =

[
H1 0
0 H2

]
.

• There exist m′1 and m′2 for which

m′1 −m =

[
H1 0
0 0

]
and m′2 −m =

[
0 0
0 H2

]
. These correspond

to a ‘partition’ of the components that correspond to the blocks.

• The difference in 〈G, ·〉 decomposes:〈
G,

[
H1 0
0 H2

]〉
=

〈
G,

[
H1 0
0 0

]〉
+

〈
G,

[
0 0
0 H2

]〉
〈G,m′ −m〉 = 〈G,m′1 −m〉+ 〈G,m′2 −m〉

• Therefore, if 〈G,m′〉 − 〈G,m〉 = 〈G,m′ −m〉 ≥ 0,

then either 〈G,m′1 −m〉 ≥ 0
or 〈G,m′2 −m〉 ≥ 0.
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Decomposition of misalignments

• If 〈G,m′〉 − 〈G,m〉 = 〈G,m′ −m〉 ≥ 0,

then either 〈G,m′1 −m〉 ≥ 0
or 〈G,m′2 −m〉 ≥ 0.

• Then we can limit our attention to
‘single-component’/‘single-block’ misalignments.



Decomposition of misalignments

• If 〈G,m′〉 − 〈G,m〉 = 〈G,m′ −m〉 ≥ 0,

then either 〈G,m′1 −m〉 ≥ 0
or 〈G,m′2 −m〉 ≥ 0.

• Then we can limit our attention to
‘single-component’/‘single-block’ misalignments.



Decomposition of misalignments

• Let m be the true mapping and m′ some false mapping.

• Every user is mapped at most once by m and at most once by m′,
i.e. every node has at most one blue and at most one red edge.

• Then all components are paths or cycles.
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Decomposition of misalignments

• All components are paths or cycles.
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• I: cycle III: m-dominant path
II: balanced path IV: m′-dominant path

• If M = m matches all users, i.e. |M | = |U| = |V|,
then there are no paths and all components are cycles.
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Error bounds

Assume |M | = |U| = |V|, so only consider cycle-inducing false
mappings.
If m′ a false mapping that induces a cycle of length 4
with true mapping M = m, then the Chernoff bound gives us exactly:

• Finite alphabet database:

P[〈G,m′ −m〉 ≥ 0|M = m] ≤ exp (−I◦2 )

• Gaussian database:

P[〈G,m′ −m〉 ≥ 0|M = m] ≤ exp (−IXY )

Henceforth we use to I without subscript to refer to either I◦2 or IXY .
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Error bounds

• |M | = |U| = |V| = n
There are

(
n
δ

)
(δ − 1)! false mappings m′ that induce a cycle of

length 2δ on m.(
n
δ

)
(δ − 1)! is upper bounded by nδ

δ .

• Let m̂ denote the ML estimate.
The expected number of cycles of length 2δ
contained in m̂−m is bounded by

nδ

δ
exp

(
−δ · I

2

)
=

1

δ
exp

(
−δ

2
(I − 2 log n)

)
• A cycle of length 2δ results in δ errors.

The total number of errors in expectation is upper bounded by:

n∑
δ=2

exp

(
−δ

2
(I − 2 log n)

)
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Error bounds

• The total number of errors in expectation is upper bounded by:

n∑
δ=2

exp
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−δ

2
(I − 2 log n)

)

• If I > 2 log n,
the expression is upper bounded by a2

1−a ≤ O(1),

where a = exp
(
− I−2 logn

2

)
.

• If I > 2 log n+ ω(1), this converges to o(1).
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Graph alignment

In graph alignment, the data consists of edge information.

The correlated graph model:

• Edges are i.i.d. random variables.

• Edges are more likely to appear in both graphs,
than to appear in one but not the other.
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Graph alignment

Classical scenario: Edges are Bernouilli random variables taking
values in {edge,non-edge}.

Other settings of interest:

• Arbitrary discrete alphabet.

Allows modelling of different types of connections in
networks.

This is a generalization of the Bernouilli case.
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Graph alignment

Classical scenario: Edges are Bernouilli random variables taking
values in {edge,non-edge}.

Other settings of interest:

• Arbitrary discrete alphabet.

Allows modelling different types of connections in networks.

This is a generalization of the Bernouilli case.

• Continuous vector space.

One case of particular interest is that of graphs with Gaussian
weights [7], [8].

7Zhou Fan, Cheng Mao, Yihong Wu and Jiaming Xu, Spectral Graph Matching
and Regularized Quadratic Relaxations I:The Gaussian Model, 2019

8Luca Ganassali, Sharp Threshold for Alignment of Graph Databases with
Gaussian Weights 2020



Graph alignment - likelihood function

• fX , fY : marginal pdfs (or pmfs) of edges in two graphs

• fXY : joint pdf (or pmf) of correlated edge pair

• WM ⊂ U × V: vertex pairs mapped by M

Let
(S
2

)
denote set of all subsets of S of size 2.

Proxy for log-likelihood of graphs:

∑
{(ui,vi),(uj ,vj)}∈(WM

2 )

log
fXY (A{ui, uj}, B{vi, vj})
fX(A{ui, uj})fY (B{vi, vj})
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log
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=
1

2

−→
M>G

−→
M

where G ∈ R(U×V)×(U×V) information density matrix,

and
−→
M ∈ {0, 1}(U×V) encodes the mapping M .



Graph alignment - MLE

MLE for graph alignment is equivalent to the following optimization:

max−→m
−→m>G−→m s.t.

∑
v

m(u,v) = 1 ∀u ∈ U∑
u

m(u,v) = 1 ∀v ∈ V

−→m ∈ {0, 1}(U×V)



Databases vs Graphs

Database alignment

MLE given by linear
optimization:

max〈G,m〉 = tr(G>m)
over m ∈ {0, 1}U×V with
row and column sums equal to 1.

∼ linear assignment problem
O(n3)

Graph alignment

MLE given by quadratic
optimization:

max−→m>G−→m = tr(G−→m−→m>)
over −→m ∈ {0, 1}(U×V) with ‘row’
and ‘column’ sums equal to 1.

∼ quadratic assignment problem
NP-hard



Graph alignment
Most well studied model: Correlated Erdős-Rényi

• Pair of graphs GA = (V ;EA) and GB = (V ;EB) on |V | = n
vertices.

• Each graph Erdős-Rényi with average degree np.

• Intersection of graphs (V ;EA ∩ EB) is Erdős-Rényi with avg.
deg. nps
Difference of graphs (V ;EA \ EB) is Erdős-Rényi with avg. deg.
np(1− s)

Generate graphs by independently generating edge random variable
for each pair of vertices.

Pr(edge in EA ∩ EB) = ps

Pr(edge in EA \ EB) = p(1− s)
Pr(edge in EB \ EA) = p(1− s)

Pr(edge not in EA ∪ EB) = 1− p(2− s)
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Graph alignment

y-axis: strength of signal
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x-axis: strength of noise y-axis: strength of signal
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Graph alignment
Graphs are positively correlated if

Pr(in neither) Pr(in both) > Pr(in EA \ EB) Pr(in EA \ EB)

⇐⇒ [1− p(2− s)]ps > p2(1− s)2

⇐⇒ s > p

⇐⇒ y

x
=

log ps/ log n

log p(1− s)/ log n
>

log p2

log p(1− p)

In the sparse regime p ≤ o(1), this corresponds to

y

x
=

log ps/ log n

log p(1− s)/ log n
> 2.
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Graph alignment
We only present results on positively correlated graphs.
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Graph alignment
Noiseless case: p(1− s) ≤ o(n2)

Edward M. Wright - 1971 [9]
Sufficient and necessary condition for noiseless case:
Alignment possible with probability 1− o(1) if and only if

np ≥ log n+ ω(1).

The cut-off corresponds to the line

y =
log ps

log n
= −1 +

log log n

log n
+

log s

log n
= −1± o(1)

[9] Graphs on unlabeled nodes with a given number of edges, Acta
Mathematica 1971
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Graph alignment
x-axis: strength of noise y-axis: strength of signal

log ps
logn

0

−1

log p(1−s)
logn 0−1−2

log ps
logn

−1
constant average degree in intersection graph

average degree Θ(ny) in intersection graph

average degree o(1) in intersection graph

−1

0

log p(1−s)
logn 0−1−2

constant

number

of edge

differences

between

graphs

constant

number

of edge

differences

per

vertex

o(1) edge

differences

-

noise-free

noisy very

noisy

positive correlation regime

neg.

corr.

−1
2



Graph alignment
Noiseless case: p(1− s) ≤ o(n2)
Sufficient cond. for polynomial-time alignment:

Polynomial-time algorithms that achieve alignment with probability
1− o(1) if np ≥ log n+ ω(1)

[10] Bla Bollobs, Distinguishing vertices of random graphs,
North-Holland Mathematics Studies 1982

[11] Tomek Czajka and Gopal Pandurangan, Improved random graph
isomorphism, Journal of Discrete Algorithms 2008
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Graph alignment
Information theoretic bound formulations for sparse regime p = o(1)

• Pedram Pedarsani and Matthias Grossglauser 2011 [12]

Sufficient condition: nps
(

s
2−s

)
≥ 8 log n+ ω(1)

This implies

ps > ω(1/n) and
(ps)2

ps+ 2p(1− s)
> ω(1/n)

For small ps, the latter implies

2 log ps− log p(1− s) > − log n

or

2y − x = −1

[12] Pedram Pedarsani and Matthias Grossglauser, On the Privacy of
Anonymized Networks, SIGKDD 2011
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Graph alignment
Information-theoretic bounds for sparse regime p = O(1/ log n)

• Pedram Pedarsani and Matthias Grossglauser 2011 [12]

Sufficient condition: nps
(

s
2−s

)
≥ 8 log n+ ω(1)

• Daniel Cullina and Negar Kiyavash 2016 [13]

Sufficient condition: nps
(

1− p(1−s)√
ps

)2
≥ 2 log n+ ω(1)

Necessary condition: nps > log n(1− Ω(1))

• Daniel Cullina and Negar Kiyavash - 2017 [14]
Sufficient condition: nps ≥ log n+ ω(1)

p(1− s) ≤ O(1/ log n) and p(1−s)√
ps ≤ O(1/ log3/2 n)

[12] Pedram Pedarsani and Matthias Grossglauser , On the Privacy of
Anonymized Networks, SIGKDD 2011

[13] Daniel Cullina and Negar Kiyavash, Improved Achievability and
Converse Bounds for Erdos-Renyi Graph Matching, Sigmetrics 2016

[14] Daniel Cullina and Negar Kiyavash, Exact alignment recovery for
correlated Erdos-Renyi graphs, 2017
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Graph alignment
Regime of particular interest:

• Most algorithmic results focus on

− log p ≥ Ω(log n) and − log s ≤ o(log n)

sparse graphs and s does not go to zero too quickly.

• This entire regime of interest is contained on line
y
x = log p+log s

log p+log(1−s) = 1.
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Graph alignment

Polynomial-time algorithms for exact alignment in the regime
(1− s) ≤ O(1):

• Jian Ding, Zongming Ma, Yihong Wu and Jiaming Xu [15]
np ≥ (log n)c and (1− s) ≤ (log n)−c

• Zhou Fan, Cheng Mao, Yihong Wu and Jiaming Xu [16]
np ≥ (log n)c and (1− s) ≤ (log n)−c

• Cheng Mao, Mark Rudelson and Konstantin Tikhomirov [17]
np ≥ (log n)c and (1− s) ≤ (log log n)−c

• Cheng Mao, Mark Rudelson and Konstantin Tikhomirov [18]
no(1) ≥ np ≥ log n(1+ε) and (1− s) ≤ min{constant,ε}

15Efficient random graph matching via degree profiles, Probability Theory and
Related Field 2021

16Spectral graph matching and regularized quadratic relaxations II: ErdosRenyi
graphs and universality, 2019

17Random graph matching with improved noise robustness, Conference on
Learning Theory 2021

18Exact Matching of Random Graphs with Constant Correlation, Conference on
Learning Theory 2021
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Graph alignment

All these polynomial-time algorithms have guarantees in the regime
where s is bounded away from 0.

Quasi-polynomial time algorithm for exact alignment:

• Boaz Barak, Chi-Ning Chou, Zhixian Lei, Tselil Schramm and
Yueqi Sheng [19]
np ≥ no(1) and s ≥ (log n)−o(1)

Unlike the polynomial algorithms, this algorithm allows s→ 0. This
is still within the regime − log s ≤ o(log(n)) and therefore does
guarantee any region to the right of the y = x line.

19(Nearly) Efficient Algorithms for the Graph Matching Problem on Correlated
Random Graphs, Advances in Neural Information Processing Systems 2019
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• Exact alignment:
No misaligned vertices
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Vanishing fraction of misaligned vertices

• Partial alignment:
Constant fraction of misaligned vertices
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Graph alignment - partial alignment
Necessary condition:

• Exact alignment [13]

nps > log n(1− Ω(1))

• Almost-exact alignment [20]

nps > O(1)

• Partial alignment [20]

nps > 1

13Daniel Cullina and Negar Kiyavash, Improved Achievability and Converse
Bounds for Erdos-Renyi Graph Matching, Sigmetrics 2016

20Cullina, Daniel, Negar Kiyavash, Prateek Mittal and H. Vincent Poor, Partial
Recovery of Erdos-Renyi Graph Alignment via k-Core Alignment, Sigmetrics 2020

21Luca Ganassali, Marc Lelarge and Laurent Massoulie, Impossibility of Partial
Recovery in the Graph Alignment Problem, Annual Conference on Learning
Theory 2021



Graph alignment - partial alignment
Sufficient condition:

• Exact alignment [13]

nps ≥ log n+ ω(1)

• Almost-exact alignment [20]

nps ≥ ω(1)

• Partial alignment [22]

nps ≥max

{
4,

2 log n

log(s/p)

}
(1 +O(1))

14Daniel Cullina and Negar Kiyavash, Exact alignment recovery for correlated
Erdos-Renyi graphs, 2017

20Cullina, Daniel, Negar Kiyavash, Prateek Mittal and H. Vincent Poor, Partial
Recovery of Erdos-Renyi Graph Alignment via k-Core Alignment, Sigmetrics 2020

22Yihong Wu, Jiaming Xu and Sophie H. Yu, Settling the Sharp Reconstruction
Thresholds of Random Graph Matching, 2021



Graph alignment - dense graphs
Recent work improved the information theoretic bound for dense
graphs with p/s = Θ(1).

Sufficient and necessary conditions:

• Daniel Cullina and Negar Kiyavash - 2016 [13] In the regime
where p ≤ O(1/ log n)

nps
(

1−(1− s)
√
p/s
)2
≥ 2 log n+ ω(1)

nps> log n(1− Ω(1))

• Yihong Wu, Jiaming Xu and Sophie H. Yu - 2021 [21]

nps
(

1−
√
p/s
)2
≥ log n(1 + o(1))

nps
(

1−
√
p/s
)2
> log n(1− o(1))

13Improved Achievability and Converse Bounds for Erdos-Renyi Graph
Matching, Sigmetrics 2016

22Yihong Wu, Jiaming Xu and Sophie H. Yu, Settling the Sharp Reconstruction
Thresholds of Random Graph Matching, 2021
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Thank you.


