
TauSSA: Simulating Markovian Queueing Networks with
Tau Leaping

Matthew Sheldon, Giuliano Casale
Department of Computing

Imperial College London, UK
{ms4520,gcasale}@ic.ac.uk

ABSTRACT
In this paper, we present TauSSA, a discrete-event simu-
lation tool for stochastic queueing networks integrated in
the LINE solver. TauSSA combines Gillespie’s stochastic
simulation algorithm with tau leaping, a methodology for
optimistic simulation acceleration. Although tau leaping is
frequently used in chemical reaction network simulation, it
has so far found limited application in queueing theory.

TauSSA offers one of the very first attempts to make
this method broadly applicable to analyze extended queue-
ing network models, which include class switching, fork-join,
and non-exponential service and arrival distributions. We
conceptualize various strategies for handling ordering and
illegal states in tau leaping that arise specifically within
queueing network models, and compare their performance
through numerical experiments. Our main finding is that
strategies that sort events based on the network topological
order incur a better trade-off between speedup and approx-
imation error.

Keywords
Queueing Networks, Tau Leaping, Simulation

1. INTRODUCTION
Queueing network simulation is routinely used for perfor-

mance analysis in a variety of domains, from computer and
communication systems to healthcare, manufacturing, and
logistics [9, 2]. Although flexibility and generality are well-
understood reasons for preferring simulation over analytical
models, speed of simulation also remains an important di-
mension also for a simulation tool, given that this is often
mentioned as a limiting factor of the approach.

In this paper, we therefore propose TauSSA, a tool for
Markovian queueing network simulation that aims at accel-
erating model evaluation through the tau leaping method [11].
Tau leaping is a technique that accelerates simulation by
optimistically processing several events simultaneously. As
some of the processed events may be spurious, the technique
coarsely approximates the trajectory of the real system, of-
fering a tuneable trade-off between accuracy and the degree
by which the simulation is accelerated.

TauSSA is made available to the community as part of

Copyright is held by author/owner(s).

the LINE solver suite1 [5]. LINE offers a modeling language
together with a collection of analytical and simulation based
tools for solving stochastic networks, primarily to support
queueing network analysis studies. Although a native sim-
ulator exists within LINE that offers Gillespie’s stochastic
simulation algorithm (SSA), this does not offer any acceler-
ation means other than independent replication of the sim-
ulations. TauSSA addresses this and it is now available
within LINE with the same license (BSD-3). Input models
can be either specified through LINE’s native specification
language or via JMT’s XML input model format [1].

Tau leaping builds upon the classic SSA method, which
may be summarized as follows. Let x be the current system
state and let aj(x) be the rate of the jth state transition
out of state x, with a0(x) =

∑
j aj(x). Then, with prob-

ability aj(x)/a0(x) the next state is obtained after firing
transition j after time τ , where τ ∼ Exp(a0(x)). We re-
fer to the discrete time instants at which state changes as
epochs. Typical state transitions in queueing networks in-
clude job departures, job arrivals, and phase change rates.
The state variables include, among others, the number of
jobs at each node, possibly differentiated according to their
class or current service phase.

Tau leaping differs from the SSA algorithm in the way
it determines the epochs and the associated state updates.
The method uses a deterministic, pre-determined, step size
τ to advance time. The time τ is also called the tau leap.
At each epoch, tau leaping calculates before advancing to
the next epoch the state changes to be applied to the state
variable by estimating the number of events nτj that have oc-
cured within the preceeding time-interval of length τ . Note
that nτj depends on the transition j that fires, hence this
number refers to identical event types. The realizations of
the random variable nτj are obtained by sampling a discrete
random variable, often using a Poisson distribution. For the
purposes of TauSSA, feasible state changes counted within
nτj include a departure, an arrival, or a phase change to
a non-exponential service or arrival process, across all the
nodes within the model.

An implicit assumption of the tau leaping method is for
the system to admit a representation as a Markov process,
therefore restricting its applicability to systems that can be
modelled within this formalism. A notable limitation is the
inability to model heavy-tailed distributions, such as Pareto
or lognormal. However, Markovian approximations to these
distributions across a finite range may be obtained by phase-
type distributions [10].

1http://line-solver.sf.net

1

http://line-solver.sf.net


Another issue arising from the application of tau leaping
is that applying to a node a given number of events nτj (e.g.,
successive departures) may result in the node entering an
invalid state (e.g., a negative population) requiring strate-
gies to return the simulation to a valid state. While these
issues may be simple to address in simple cases, in more com-
plex scenarios some degrees of freedom exists on the choice
of mechanism to recover the feasible state. For example,
in a network of stations with finite capacity buffers, if the
nτj events influence the position of a collection of multiclass
jobs, the final state may have a different job mix depending
on which jobs are dropped, and which ones are left in the
system, after the recovery action. As such, we propose and
examine a number of strategies to address these contingen-
cies, studying their interplay with both simulation accuracy
and speed.

The rest of the paper is organized as follows. Section 2
positions TauSSA with respect to the state-of-the-art. Sec-
tion 3 overviews the software architecture of the tool. A
discussion of the challenges posed by the application of tau
leaping to queueing networks is given in Section 4, along-
side a set of strategies to address them. Section 5 compares
the proposed tau leaping strategies by means of numerical
experiments. Lastly, Section 6 gives conclusions.

2. PRIOR WORK
Existing discrete-event simulation tools for queueing net-

works, such as the JSIMgraph tool [1] or Omnet++2, mostly
differ from TauSSA in being centered on ad-hoc, general
purpose, queueing simulation. Besides increased general-
ity in cases such as heavy-tailed distributions, this simula-
tion style does not assume specialist knowledge in Marko-
vian processes and is therefore fairly widespread in industry.
However, it has worse space complexity than SSA-based so-
lutions, as the latter do not need to store memory about the
system other than the current state. Furthermore, within
such tools, common ways to accelerate the simulation in-
clude parallel and distributed algorithms, within which pes-
simistic and optimistic algorithms may be adopted. Such
methods are not incompatible with techniques such as SSA,
as forms of parallel SSA execution also exist [7].

Other notable approaches to queueing network simulation
include tools exposing numerical methods based on ordinary
differential equations (ODEs) [12] and techniques for perfect
simulation based on coupling from the past [3]. ODE-based
methods are typically applied to fluid and mean-field ap-
proximations of stochastic networks. They provide accurate
approximations to large-scale systems and further enable the
use of time-varying rates that ease the integration of empir-
ical trace data with queueing analysis. At the same time,
such methods can incur non-negligible numerical difficulties
in presence of non-smooth or stiff differential ODEs, leav-
ing margin for uncertainty on the robustness of the solution
and posing challenges in the selection of delicate parameters
such as the integration tolerances and step sizes.

Coupling from the past (CFTP) offers the ability to obtain
samples for the equilibrium distribution of a Markov process
therefore avoiding the bias introduced by transient periods
at simulation start. The method requires the evaluation of
the coupling of all the possible feasible trajectories obtained
for all possible choices of the initial point. This provides

2https://omnetpp.org

Figure 1: TauSSA internals

an intrinsic limitation, as it is not uncommon for queueing
systems to have an unbounded, or combinatorially large,
number of initial points. While analytical bounding schemes
may be applied to obviate to this issue [3], these complicate
the extension of the tool to features not handled by the
bounds as these would need to be re-derived.

3. TAUSSA TOOL

3.1 TauSSA features
TauSSA supports a number of node types used to specify

the queueing network, including multi-server queues, delay
stations, fork-join nodes, class-switching nodes, and routers
to specify arbitrary probabilistic split and join points in the
network topology in addition to the basic routing probabili-
ties out of the other nodes. Scheduling policies include first-
come first-served, last-come first-served, processor sharing,
and service-in-random order. As tau leaping requires the
system to be Markovian, arrival and service processes in-
clude phase-type distributions such as Exponential or Er-
lang, but also more general Markovian Arrival Processes
(MAPs). The latter are Markov-modulated point processes
which generalize phase-type distributions such as the Er-
lang, but that also allow capturing of non-renewal processes
where correlations exist among the inter-arrival times of
events.

Relevant model metrics include queue length, utilization,
response/residence time, and throughput. The user is able
to use the MSER-5 and R-5 methods to determine the tran-
sient state of the simulation as well [6, 13, 1].

3.2 TauSSA implementation
The TauSSA simulator is developed fully in Java and con-

sists of a few key data structures and components, as illus-
trated in Figure 1. The SolverSSA class, which is the top-
level class exposed within the LINE solver suite, works as a
user interface for both tau leaping and standard SSA simula-
tions. This works as a bridge between the user and the model
components, handles the simulation configuration, and calls
each epoch. An object called EventList has the primary re-
sponsibility of keeping track of various events, calculating
the rates, triggering events, and updating the time of the
system. The StateMatrix object is tasked with the system
state, including the number and type of jobs at each node,

2

https://omnetpp.org


their ordering, and tracking the phases of non-exponential
service and arrival processes. The Timeline tracks the time
and type of each event, as well as the past and mean val-
ues of each metric. The latter is also returned when the
simulation terminates.

Since TauSSA exclusively simulates memoryless events,
it features a number of differences in comparison to more
traditional simulations. For example, no pending event list
is necessary and the state can be updated as soon as the
next event has been determined. Deciding the next event
to fire, and when, can be significantly faster with the SSA
algorithm. In addition to this, TauSSA claims a 100x im-
provement in SSA simulation time over LINE’s existing SSA
solver, in certain cases. When tau leaping is applied, solving
time can be reduced by a further 20-50%.

4. TAU LEAPING METHOD

4.1 Algorithm
As mentioned, tau leaping differs from the traditional SSA

algorithm for using a pre-determined step size τ to transi-
tion between epochs. Its pseudocode may be summarized as
follows.

1. The system begins in an initial state, x0 at time 0.

2. For each possible transition j out of the current state,
characterized by vector ej as the difference between
the next state and the current one, all transition rates
aj(x) are evaluated.

3. For each possible transition j, a Poisson random vari-
able is calculated nτj ∼ Poisson(aj(x), τ).

4. Update t to equal t+ τ , and x based on a given state
update strategy, the number of repetitions nτj , and the
nature of the event ej .

5. Return to step 2 until the simulation ends.

An issue with tau leaping in queueing networks is that it
may request the system to enter an illegal state. For exam-
ple, 5 departures may be requested from a queue that only
has 3 jobs. This issue has already been discussed in the liter-
ature, with solutions such as Binomial and Modified Poisson
tau leaping [4]. This problem is more extensive in queueing
networks than in chemical reaction models, as states where
the buffer is exceeded compound to the issue of departures
exceeding the available population. Given the differences
between queueing networks and chemical reaction systems,
we propose in the next section novel ways to handle invalid
states within a epoch.

4.2 State strategies: handling invalid states
We now describe the state strategies available in TauSSA,

which are experimentally compared in later sections.
Cutoff strategy. A simple way to implement this has been
termed the Cutoff method, in which the final state is set to
max(0,min(x + d, c)), where x is the initial state, d is the
leap amount (positive or negative) and c is the capacity of
the queue. The shortcoming of this approach is that it occa-
sionally might result in an higher occurrence of states near
0 and the maximum capacity, yielding some inaccuracies in
metrics such as utilization.

TimeWarp strategy. TimeWarp is a simplified imple-
mentation of a commonly used method in simulation known
as time warping. In this case, the system will reject any
tau leap that results in an illegal state. However, this can
be quite demanding computationally. To bound overheads,
the current TauSSA implementation has a maximum of W
consecutive time warps in a row. If another illegal state is
generated after the first W , the system applies the cutoff
method. This is intended to prevent the system from re-
maining in a state where a legal tau leap is very unlikely,
such as situations where several queues are near empty de-
spite high departure rates. In the experiments reported in
this paper, we have used W = 2.

TauTimeWarp strategy. TauTimeWarp is an exten-
sion of the TimeWarp method that allows the τ to halve
with each successive time warp. The minimum value of τ is
set at 0.0001, while W remains equal to 2. This method is
one of the most computational demanding among the pro-
posed techniques.

TwoTimes strategy. Another option is to first calculate
the total number of event counts, and then run through each
event twice. In the first pass, only events that do not bring
into an invalid state are processed. Any invalid departures
or arrivals can then be processed only on the second itera-
tion. This further approximates the generated state changes
without any reruns or constraint violations. A pseudo-code
of the method is given next, to be executed at each epoch:

1. For each event ej , find all event counts nτj using the
tau leaping algorithm.

2. For each event in the event list ej , calculate the max-
imum number of event repetitions mj , and the differ-
ence in state ej .

3. For each event ej , apply it kj = min(nτj ,mj) times.
This is the first pass.

4. For each event ej , apply it again min(nτj − kj ,mj)
times. This is the second pass.

4.3 Ordering strategies: handling invalid se-
quences

The performance and accuracy of a queueing network sim-
ulated with tau leaping depends on the order in which each
event is applied. For example, imagine a network with a
source followed by a queue with a low-capacity buffer. If
departure events from the source are processed first, then it
is likely that not all jobs will not be able to enter the queue,
resulting in a high drop rate measure. If departures from the
queue are processed first, then more spare capacity will be
available for source jobs to enter, resulting in a lower drop
rate.

Therefore, it is necessary to define the order in which
events in the event list will be processed. In this case, pro-
cessing involves calculating the event counts nτj , and then
triggering the event. In what follows, we define a number of
alternative strategies that may be pursued to apply specific
orderings upon evolving a queueing network state with tau
leaping. Each of these strategies constructs an ordered event
list, and then TauSSA generates the number of event ap-
plications nτj , applies these according to the state strategy,
and then proceeds to the next event in the list.

RandomEvent strategy. The RandomEvent method
involves triggering each event j at random order at each

3



epoch. Since an event is bound to a specific node and job
class or phase, the state update operation is uniquely de-
fined. An advantage of this method is that all events will be
selected evenly across the ordering. This is the preferred so-
lution, in many cases, for simultaneous events in a discrete-
event simulation.

RandomEventFixed strategy. The RandomEventFixed
method involves first shuffling the event list at time 0, and
then triggering the events in the same order at each epoch.
For each transition j, nτj identical firings of that transition
are consecutively applied. In this case, as in RandomEvent,
the way that events were entered, and the topology of the
queue, have no impact on the system. This strategy aims
to imitate RandomEvent across simulations with multiple
runs, without the need to sort at each iteration. A signifi-
cant downside is that the simulation will be highly sensitive
to the original ordering chosen at time 0. This random or-
dering can create bias in individual runs, but this decreases
over multiple independent replications.

DirectedGraph strategy. Queueing networks can be
represented as directed graphs, and a topological sorting
of this is a possible ordering for events. The DirectedGraph
method uses this to ensure that arrivals will generally be pro-
cessed before departures. Under this condition, neglecting
any cycles, each node will start with the maximum number
of jobs it will have during the iteration, and will therefore be
able to depart as many jobs as possible. This can help pre-
vent negative states, but will create an upward bias in queue
length. In cases of an open network, sources are considered
first. In closed networks in TauSSA, each class has a refer-
ence station, which are considered first. The root of these
is randomly chosen. Finding an ordering from the directed
graph is done with a variation of Kahn’s algorithm [8].

1. Consider an empty queue q, a list of all active events
in, and an empty list out.

2. Loop through all events in in, and enqueue any depar-
ture events at a source or a reference station in q, and
remove them from in.

3. Dequeue an event e from q, and add it to out.

4. Create a list of all nodes, n, that receive jobs outputted
from the node corresponding to event e.

5. Loop through in, and enqueue all events corresponding
to a node in n.

6. If q is not empty, return to step 3.

DirectedCycle strategy. The DirectedGraph method
may experience difficulties in queueing networks with finite
capacities, and cyclic networks. Under this method, a queue
with a capacity will always receive jobs before it processes
them. The DirectedCycle method solves this issue by cycling
through the starting node on each iteration. During each
iteration, the first event will be moved to the end of the
event list. Therefore, departures will still be processed in
order, but there will be chances at each node for jobs to
depart before new jobs arrive.

A pseudocode of the method is as follows:

1. Find an ordering to the events using the directed graph
method, and insert them into a list l.

2. Apply the tau leaping algorithm to determine the fol-
lowing event(s) and the number of applications.

3. Move the first event in the ordering to the end of l.

4. Check if the number of samples or time limit of the
simulation has been exceeded. If so, end the simula-
tion. Otherwise, return to step 2.

5. EXPERIMENTAL EVALUATION
We have validated TauSSA using two experiments, com-

paring state and ordering strategies, as well as the sensitiv-
ity of the results to varying τ values. These experiments are
discussed in the next subsections.

5.1 State and ordering strategies
In this experiment, we compare the performance and accu-

racy of the proposed state and ordering strategies. The val-
idation features all possible state-order strategy pairs, e.g.,
DirectedCycle/Cutoff, DirectedCycle/TwoTimes, etc. The
accuracy of each pair is analyzed using 500 randomly gener-
ated model parameterizations, each with 5 M/M/1 queues,
1 open class, random topologies, and random service/arrival
rates. Service and arrival rates range from 1 to 50, and any
model with an unstable queue is discarded and re-generated.
The τ parameter is determined using one of three different
parameterizations: (i) τ = k/maxj(aj), k ∈ {2.0, 2.1, ...2.5};
(ii) τ = k/avgj(aj), k ∈ {0.5, 0.6, ...1.5}; (iii) τ = k/minj(aj),
k ∈ {0.1, 0.15, 0.2}. The execution is stopped upon either
hitting simulation time t = 10000, or 107 samples, or a time-
out of 1 second.

Results are given in Figure 2. Accuracy is measured by
the Mean Absolute Percentage Error (MAPE) of the sim-
ulated queue lengths at all nodes, averaged across experi-
ments. The figure indicates that the DirectedCycle/Cutoff
systematically dominates the other techniques, offering a
trade-off of about 21% MAPE in return for a simulation
time reduction that is 67.2% of the standard SSA. As such,
it is chosen as the default technique adopted in TauSSA.
The TimeWarp-based methods are not included in the fig-
ure, as they are significantly worse than the other methods
in terms of accuracy and speed. Various tradeoffs of MAPE
and accuracy can be obtained, as shown in Figure 2. How-
ever, our analysis reveals that an unguided choice of method
to compute τ may fundamentally compromise the quality of
tau leaping execution, for example τ = k/maxj(aj) is found
to underperform, even compared to standard SSA. We find
instead that τ = 1.5/avgj(aj) with DirectedCycle/Cutoff
performs best across the considered experiments.

To further examine the optimal recommendation, the rel-
ative simulation time in comparison to a normal SSA solu-
tion is included in Table 1. The table shows the MAPE of
each configuration, including the TimeWarp-based methods
methods. It is clear that the performance of these tech-
niques is dominated by the Cutoff method. It is interesting
to observe, that while it would be natural to conclude that
DirectedCycle is superior to other methods by considering
order sequencing that are closer to the real sample path, do-
ing so by favouring the interleaving of arrival and departure
events, this is reductive since DirectedGraph has a similar
approach but underperforms. As such, it is only the mutual
combination of DirectedCycle and Cutoff that provides an
optimal performance.

4



Figure 2: MAPE vs Simulation Time Ratio un-
der different τ formulas. Markers +:k/max(aj), o:
k/avg(aj), x: k/min(aj)

Figure 3: Simulation Time (ms) under different val-
ues of τ , by model type

5.2 Sensitivity analysis
Figure 3 describes the performance of TauSSA for dif-

ferent values of τ ∈ {0.0625, 0.125, 0.25, 0.5, 1} and also in-
cludes a comparison against the original SSA algorithm. In
this experiment, 17 pre-selected sample models with vary-
ing topologies are used to determine the computation time
under different values of τ . Our goal is to illustrate con-
vergence of the simulator to exact for decreasing τ values.
In particular, we use two strategies to illustrate the point,
namely RandomEventFixed and TwoTimes. The experi-
ment is done by trials spanning 30 runs, with 5 warm-ups,
and a simulation time of t = 10000.

The results show that under the current implementation
of TauSSA, tau leaping displays a performance that de-
pends significantly on the type of model studied. In par-
ticular: simple model of isolated queueing systems with low
event rates gain little to no time savings from tau leaping;
conversely, more complex networks, with higher total event
rates have been seen to achieve better savings.

According to Table 1, we further observe that a doubling
of τ roughly corresponds to a 33% decrease in solving time
at lower values of τ . Speed gains from higher values of τ
are often offset by decreases in accuracy. Thus, a suitable
tuning of the τ value should be chosen to strike the desired
balance. For example, a few trial runs may be used to obtain
a sensible assignment of τ .

6. CONCLUSION

Table 1: Evaluation of state and ordering strategies.
The last column is the simulation time ratio, i.e., the per-
centage of time saved compared to standard SSA simulation.

Ordering
Strategy

State Strategy MAPE
Ttau

Tssa

DirectedCycle Cutoff 0.218 67.2%
RandomEvent Cutoff 0.323 70.5%
RandomEvent TauTimeWarp 0.414 193%
RandomFixed TwoTimes 0.438 78.8%
RandomEvent TwoTimes 0.440 81.0%
DirectedCycle TwoTimes 0.444 78.9%
DirectedGraph TwoTimes 0.444 77.2%
RandomEvent TimeWarp 0.503 174%
DirectedGraph Cutoff 0.673 67.3%
RandomFixed Cutoff 0.675 70.0%
RandomFixed TauTimeWarp 0.850 205%
DirectedCycle TauTimeWarp 1.06 196%
DirectedCycle TimeWarp 2.16 156%
DirectedGraph TauTimeWarp 2.37 200%
RandomFixed TimeWarp 2.90 206%
DirectedGraph TimeWarp 17.2 160%

In this paper, we have proposed TauSSA, a queueing net-
work simulator based on tau leaping, as well as a brief anal-
ysis of the simulation configuration and tau leap value se-
lection. Our results indicate that TauSSA can significantly
accelerate simulations under appropriate event ordering and
selection of the tau leap value τ . These initial findings show
that no all implementations of tau leaping perform equally
well, and care should be taken to select an appropriate strat-
egy to address invalid states and event ordering issues. We
further find that the two issues appear to be intertwined,
as there is significant reduction in accuracy when particular
combinations of state and ordering pairs are chosen. Over-
all, our initial numerical study suggests good performance
for simple strategies that correct states by forcedly imposing
feasibility through cutoffs and that process events in cyclic
order.

Future work may explore various lines of research. First,
automated methods to determine the optimal τ value may
be investigated, for example based on machine learning tech-
niques. Moreover, advanced features features such as fork-
join, priorities, temporal dependent in service or arrivals, or
finite capacity regions have not been investigated in this ini-
tial study and offer novel outlets for possible investigation.

The TauSSA tool is part of the LINE solver3, released
with the same license (BSD-3).

7. REFERENCES
[1] Marco Bertoli, Giuliano Casale, and Giuseppe Serazzi. The

JMT simulator for performance evaluation of
non-product-form queueing networks. In Proc. of ANSS,
pp. 3–10, IEEE, 2007.

[2] Gunter Bolch, Stefan Greiner, Hermann de Meer, and
Kishor S. Trivedi. Queueing Networks and Markov Chains.
John Wiley & Sons, 2006.

[3] Anne Bouillard, Ana Bušić, and Christelle Rovetta. Perfect
sampling for multiclass closed queueing networks. In Proc.
of QEST, pp. 263–278, 2015, Springer-Verlag.

[4] Yang Cao, Daniel T Gillespie, and Linda R Petzold.
Avoiding negative populations in explicit Poisson
tau-leaping. The Journal of chemical physics,
123(5):054104–8, 2005.

3https://github.com/imperial-qore/line-solver
https://github.com/imperial-qore/line-solver-java

5

https://github.com/imperial-qore/line-solver
https://github.com/imperial-qore/line-solver-java


[5] Giuliano Casale. Integrated performance evaluation of
extended queueing network models with line. In Proc. of
WSC, pp. 2377–2388. IEEE Press, 2020.

[6] George S Fishman. Statistical analysis for queueing
simulations. Management science, 20(3):363–369, 1973.

[7] Arthur P. Goldberg, et al. Exact parallelization of the
stochastic simulation algorithm for scalable simulation of
large biochemical networks, 2020.
http://arxiv.orgabs2005.05295

[8] A. B. Kahn. Topological sorting of large networks.
Commun. ACM, 5(11):558–562, November 1962.

[9] Averill M. Law and W. David Kelton. Simulation Modeling
and Analysis. McGraw-Hill, 3 edition, 2000.

[10] M. F. Neuts. Structured Stochastic Matrices of M/G/1
Type and Their Applications Marcel Dekker, NY, 1989.

[11] Muruhan Rathinam, et al. Consistency and stability of
tau-leaping schemes for chemical reaction systems.
Multiscale Modeling & Simulation, 4(3):867–895, 2005.

[12] Johan Ruuskanen, et al. Improving the mean-field fluid
model of processor sharing queueing networks for dynamic
performance models in cloud computing. Perf. Eval.,
102231, 2021.

[13] K.P White, M.J Cobb, and S.C Spratt. A comparison of
five steady-state truncation heuristics for simulation. In
Proc. of WSC, vol. 1, pp. 755–760, IEEE, 2000.

6


	Introduction
	Prior work
	TauSSA tool
	TauSSA features
	TauSSA implementation

	Tau leaping method
	Algorithm
	State strategies: handling invalid states
	Ordering strategies: handling invalid sequences

	Experimental evaluation
	State and ordering strategies
	Sensitivity analysis

	Conclusion
	References

