
Stochastic modelling and evaluation using GreatSPN

Elvio G. Amparore
Dipartimento di Informatica

Università degli Studi di Torino
Corso Svizzera 185, 10149, Torino, Italy

amparore@di.unito.it

ABSTRACT
GreatSPN is a tool that supports model-based (stochastic)
analysis of Discrete Event Dynamic Systems (DEDS) mod-
eled as Generalized Stochastic Petri Nets or one of its ex-
tensions like Stochastic Well-formed Nets, Deterministic and
Stochastic Petri Nets among the other. Performance evalu-
ation of the timed and stochastic properties of the modeled
systems was the initial reason for the tool development, and
it is today a large and flexible framework that incorporates
several analysis techniques, performance index types, varie-
gated transition timing specifications, etc. In this paper we
report the current status of the GreatSPN framework, with
a focus on the modularity, the types of stochastic analysis,
the specification and evaluation functionalities, and its role
for the performance evaluation.

Keywords
GreatSPN, performance evaluation, stochastic analysis, Petri
nets.

1. INTRODUCTION
Modeling and evaluating the performances of a system re-

quires a user to be capable of expressing the salient features
of the system into an abstract form, to be capable of formu-
lating analytical methods to compute relevant indices and
infer useful properties and information. Therefore, a central
part of the performance evaluation of system is the avail-
ability of abstract formalisms for modelling systems, and
possibly the availability of software tools to automate the
computation of analytical and numerical properties.

GreatSPN is a common framework of independent tools,
developed starting from 1986, which is built around the
Petri net model formalism. The framework incorporates
more than 60 tools, with many integrated into a single com-
mon Graphical User Interface (GUI), and it is designed
around the concept of a modelling workflow. Petri nets are
used as the central model formalism due to their simplic-
ity, and their intuitive way to model asynchronous and con-
current systems. Several extensions have been formulated
to express timed and stochastic event definitions, most no-
tably the Generalized Stochastic Petri Net (GSPN), which is
an excellent formalism for performance evaluation of large
systems due to its automatic conversion into the underly-
ing Continuous-Time Markov Chain (CTMC). Two impor-

TOSME2021 – Tools for stochastic modelling and evaluation
Copyright is held by author/owner(s).

tant extensions to the GSPN are included: Stochastic Well-
formed Nets (SWN), which increase the power of the mod-
elling formalism, and Deterministic and Stochastic Petri Nets
(DSPN), which allow rich characterization of the firing time
distributions.

The GUI plays an important role, since the most impor-
tant tools are accessible in a user-friendly way, while provid-
ing a simple environment to perform all the basic operations
(modeling, verification, analysis, simulation, etc).

In this paper a description of the current status of Great-
SPN is provided, starting from an overview of the main
tools, the kinds of stochastic analysis available, who is the
target user base for this framework. A brief example of a
modeled system is also provided, together with reference to
recent case studies performed with GreatSPN. GreatSPN is
open source, and links on how to obtain the tool are included
at the end.

1.1 Comparison with other Petri net tools
Several other tools are built around similar concepts of

GreatSPN, but only few provide a comparable platform in
terms of tools, model formalisms, numerical methods, inte-
gration and user-friendliness. A surely incomplete list fol-
lows.

TimeNet. Derived from DSPNExpress (originally inspired
by GreatSPN), TimeNET [19] is focused on steady state and
transient numerical solutions of DSPN systems, and simu-
lation. For the latter, TimeNET provides very advanced
techniques as well as a flexible way to express general firing
time distributions.

APNNtoolbox. Based on a different flavour of stochastic
colored Petri nets known as Abstract Petri Net Notation
(APNN), the tool [9] supports the generation of large reach-
ability graph using Kronecker representation for the matrix
encoding, and their efficient solution in steady state.

CPN-Tools. It is a tool [12] to edit, simulate and analyse
Petri nets designed in a highly flexible colored extension,
the Colored Petri Net (CPN). However, the tool does not
use stochastic timings for the transition firings, limiting the
use cases that can be modeled and analyzed.

Möbius. The tool Möbius [11] is a dependability and perfor-
mance modelling environment designed around a different
extension of the Petri net formalism, the Stochastic Activity
Network (SAN). Möbius is probably the most mature tool
for Petri nets, and supports a wide range of numerical and
simulation tools.

Oris. The tool Oris [16] is designed around timed and stochas-

Decision Processes Model checkingStructural Analysis Stochastic solution

Model translation / composition
Graphical Editor

of GreatSPN

PNML
model

gsol
PNML rev.2009 to net/def

translation

ArgoSPE
Eclipse UML to Petri net

translation

unfolding2
SWN to P/T net translation

algebra
Composition by P/T

superposition

specification

MDWN
MDP from Markov Decision

Petri nets

mdwnsolve
MDP solution

mdwn2prism
MDWN to Prism conversion

MC4CSLTA
Stochastic model checker for

CSLTA

STARMC
Symbolic CTL*
model checker

struct / bounds
Place bounds,

conflict sets

ilp-bounds
Place bounds using integer

LP

invariants2
P/T flows, semiflows, basis,

traps, suphons

(GSPN|WN|WNS)RG
Reachability graph

generation

sc / trs
Stationary/Transient solution

computation

(GSPN|WN|WNS)SIM
Monte Carlo simulation

DSPN-Tool
Steady-state

MRGP solution

model as
GSPN
SWN

MRGP

Figure 1: Overview of the GreatSPN framework.

tic Petri nets, with a focus on the analysis of non-Markovian
system (more general than DSPN), for which it is the most
advanced tool available today.

PIPE. The Platform Independent Petri Net Editor tool, or
PIPE [8], is a Java-based application with many features
for modeling and analyzing Petri nets. PIPE offers a nice
interactive editor, animated token game, structural analysis,
state space construction, stochastic analysis and simulation.
It has several advantages, including being very compact and
portable across multiple platforms.

JMT. The Java Modeling Tools [7] is a framework for per-
formance evaluation for queueing Petri net models. It pro-
vides simulation as well as analytical solution tools, includ-
ing an implementation of the Mean Value Analysis (MVA)
algorithm (which is missing in the GreatSPN framework),
asymptotic bound analysis, and workload analysis.

QPME The Queueing Petri net Modeling Environment [14]
is an Eclipse plugin for modeling and analyzing hyerarchical
colored queueing Petri net models. It features a graphical
editor and an advanced simulation engine.

2. PERFORMANCE EVALUATION USING
GREATSPN

The GreatSPN framework is a collection of tools that can
be roughly organized by their functions, into these tool cat-
egories:

1. GUI The unified graphical interface [1];

2. Translation and composition tools to deal with mul-
tiple formats and model unfolding;

3. Structural analysis of model properties;

4. Markov Decision processes support (MDP);

5. Model Checking of temporal logics;

6. Stochastic solution using the Reachability Graph
(RG), simulation, or differential equations.

Figure 1 depicts the main tools of the framework, organized
by their logic functions. In this short tool paper we will
focus on the stochastic solution module, which comprises a
collection of tools to deal with numerical and simulation-
based analysis.

2.1 Input formats
GreatSPN has been recently modernized to support the

PNML [13] standard format (both P/T and Symmetric Nets).
Unfortunately, PNML does not currently have a proper way
to encode stochastic information on the net elements, hence
only the net structure can be imported/exported. For the
remaining purposes, the main input format remains the non-
standard but broadly supported net/def format. Other ex-
porters (APNN, GrML, NetLogo) are also available.

2.2 Type of stochastic analysis
The core concept of the framework is designed around an

integrated workflow for modeling and verification. Figure 2
illustrates the core steps of the workflow. The framework
user first draws the model using the Petri net formalism.
Models can be modular, i.e. they are made of separate in-
dependent nets that are combined together using net com-
position algebraic operators. The workflow follows these
steps:

1. Draw the Petri net model, usually with one of the sup-
ported extensions (GSPN, SWN, DSPN).

2. Verify the model structure by means of its structural
properties, which include: P/T-invariants, P/T-flows,

Draw model
Verify

structural
integrity

Specify &
compute

performance
indices

Export
data or

draw plot

Figure 2: Workflow of the GreatSPN framework.

siphons, traps, interactive token game simulation, dead-
lock analysis, CTL(continuous time logic)/LTL(linear
time logic)/CTL* properties, etc.

3. Specify a tool and a set of target measures to compute
with, and run the tool interactively from the GUI, or
manually from the command line.

4. Export the resulting plot or data in a common format.

All tools exist as command-line binaries, which allows to
automatize batch and complex job runs.

2.3 Relevant techniques

2.3.1 steady state and transient numerical solutions
The basic stochastic solution employs the construction of

the Reachability Graph (RG) of the Petri net model. There
are several flavours of RG that can be built:

1. GSPNRG: basic RG of GSPN models.

2. WNRG: RG of SWN models, i.e. supporting colored
transition firings.

3. WNSRG: Symbolic RG of SWN models, exploiting
model symmetries.

4. DSPN-Tool: RG of Markov Regenerative Processes
(MRgP) of P/T models using general transition firings.

5. STARMC: RG encoded using Decision Diagrams [5].
Only limited stochastic solutions (steady state with Ja-
cobi method) are possible, but very large state spaces
(10100 and beyond) can be encoded.

Upon state space construction, a numerical solution can be
performed, in steady state or in the transient state at a spe-
cific time t. DSPN-Tool and STARMC only support steady
state solutions.

Performance indices are expressed using a domain-specific
language that allows to formulate expressions using place
marking probabilities, place distributions or transition through-
puts. Global place marking distributions and transition
throughputs can also be exported in CSV and Excel format,
to be processed with external tools.

2.3.2 Stochastic model checking using CSLTA

A more advanced dependability approach is the CSLTA

logic (Continuous Stochastic Logic with Timed Automata),
in which the computed performance index is expressed using
a Deterministic Timed Automata (DTA). The DTA can be
designed graphically in the GreatSPN GUI, and then used
to compute indices on models. The DTA can contain clocks
and clock resets, which allow for complex timing specifica-
tions.

2.3.3 Solution of DSPN systems
The DSPN solver deals with an extended Petri net model

formalism, which includes marking parameters, rate param-
eters, predefined transition policy (a transition may be op-
erated by multiple parallel servers, or its delay may be de-
fined by a marking-dependent function), general distribu-
tion firing times expressed as probability density functions,
marking-dependent arc functions, and transition guards. This
solver can either treat CTMC (in steady state and in tran-
sient) and MRgP (only in steady state) and employs ad-
vanced numerical solution methods (Krylov-subspace meth-
ods). The RG size that can be treated is in the order of the
tens of millions of states. See [2] for a comparison with the
other existing DSPN tools.

2.3.4 Simulation
A Monte Carlo simulator is available in the framework,

and can deal with solutions of models using batch simulation
in transient or in steady state. The simulator supports SPN
models with an arbitrary number of transitions with general
firing time distributions (uniform, Erlang, etc.). A compar-
ison involving the use of the GreatSPN simulator can be
found in [18], where the high accuracy and the performance
of the algorithms employed by the simulator is shown. The
tool is guided by the target performance indices to compute,
and iterates over produced events until all indices are below
the accuracy threshold.

3. TOOL TARGETS
While the GreatSPN framework has been used in multiple

contexts (biological modeling [17], industrial case studies [6],
networking [15], to name a few) in the course of its long his-
tory, the framework itself was designed as a tool for research.
In the last years, a special effort was made to reorganize
the tools and the interface to be easy to use for teaching
purposes [4]. The reorganization is done by separating ba-
sic/intermediate/advanced features, in order to provide a
more gradual learning curve to the students learning hot to
use the framework.

3.1 Recent GreatSPN case study
We summarize briefly a recent case study [3] of an Italian

multi-utility company that operates in a geographical area
of about 2200 km2, with 531k inhabitants. The company
manages water and gas distribution networks. To comply
with national regulations, the company is required to inter-
vene in case of a suspected gas leakage with a technician
on-site in less than an hour, for at least 95% of the client
calls.

of call from a client of a detected leak of gas, a technician must be on-site in
less than 1 hour. When on site, the technician first secures the problem. Then,
he may decide to actually fix the problem, if there are no other open requests.
Otherwise, he leaves the site, sending an external plumber to do the fix.

In[2162]:= H* TRAVELLING TIMES - FELINAêSUD *L
felina = 81, 6, 6, 7, 10, 12, 13, 18, 21, 22, 25, 26, 28, 29, 29, 33, 34, 35,

36, 37, 37, 39, 39, 40, 40, 41, 42, 42, 47, 49, 49, 49.3, 51, 52, 53, 53, 54, 56, 61, 62, 63, 69, 70<;
est = 81, 2, 2, 4, 5, 9, 10, 11, 11, 12, 12, 13, 13, 13, 14, 15, 15, 16, 16, 16, 17, 17, 18, 18, 18, 19, 19, 20, 20, 20, 20,

21, 21, 22, 22, 22, 22, 22, 23, 23, 23, 23, 24, 24, 24, 24, 25, 25, 25, 25, 25, 25, 25, 26, 26, 27, 27, 27, 27, 27, 27,
27, 28, 28, 28, 28, 28, 28, 29, 29, 29, 30, 30, 30, 30, 31, 31, 31, 32, 32, 32, 32, 32, 33, 33, 33, 33, 34, 34, 35, 36,
36, 36, 37, 37, 37, 37, 37, 38, 38, 39, 40, 40, 41, 41, 42, 43, 44, 44, 44, 44, 47, 47, 49, 52, 52, 53, 55, 55, 62<;

ovest = 82, 2, 3, 3, 3, 5, 5, 6, 7, 7, 7, 7, 7, 9, 9, 10, 10, 10, 11, 12, 12, 12, 12, 12, 13, 14, 14, 14, 15, 15, 15, 15, 15,
16, 16, 16, 16, 17, 17, 17, 17, 17, 17, 18, 18, 18, 19, 19, 19, 19, 19, 20, 20, 20, 21, 22, 22, 22, 23, 23, 23, 23, 23, 23,
23, 23, 23, 23, 24, 24, 24, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 26, 26, 26, 26, 27, 27, 27, 27, 28, 28, 29, 29, 29,
29, 29, 29, 29, 29, 30, 30, 30, 30, 31, 31, 32, 32, 32, 32, 33, 33, 33, 33, 34, 35, 35, 36, 36, 37, 37, 37, 38, 38, 38, 38,
39, 40, 41, 41, 41, 41, 42, 42, 42, 43, 43, 43, 44, 46, 47, 47, 48, 49, 49, 51, 51, 52, 56, 58H*100,125,151,164*L<;

nord = 81, 2, 2, 4, 5, 5, 6, 6, 7, 10, 11, 11, 11, 12, 16, 16, 17, 17, 18, 18, 18, 19, 19, 19, 19, 19, 19, 20, 20, 20, 20, 21, 21,
21, 21, 22, 22, 22, 22, 22, 22, 23, 24, 24, 24, 25, 25, 25, 25, 25, 26, 26, 27, 27, 27, 27, 27, 28, 28, 28, 29, 29, 29, 29,
29, 29, 30, 30, 30, 31, 31, 31, 32, 32, 33, 33, 33, 34, 34, 35, 35, 35, 35, 35, 35, 36, 36, 36, 37, 37, 37, 37, 37, 37, 38,
38, 38, 38, 38, 38, 39, 39, 39, 39, 39, 40, 40, 40, 40, 41, 41, 41, 42, 42, 42, 42, 43, 44, 44, 44, 44, 44, 45, 45, 45, 46,
46, 46, 46, 46, 46, 46, 46, 47, 47, 48, 51, 52, 53, 53, 54, 55, 55, 56, 62, 63, 69, 73, 87, 90H*,106,106,121,134,183*L<;

mkFit@d_, c_, h_D := Module@8nSamp, pdf, Buckets, max, pdfmax, hl, barchart, mean, erlangdist, plots<,
nSamp = Length@dD;
Buckets = 10;
hl = HistogramList@d, BucketsD;
Buckets = Length@hl@@2DDD;
barchart = BarChart@hl@@2DD, ChartLabels Ø hl@@1DDD;
mean = c; H*Median@dDêêN;*L
pdf = PDF@ErlangDistribution@Ò1, Buckets ê mean * Ò1DD &;
max = Max@hl@@2DDD;
pdfmax = ErlangMaximum@Ò1, Buckets ê mean * Ò1D &;
erlangdist = Hmax ê First@pdfmax@Ò1DD * hL * Hpdf@Ò1DL@Hx - 0.5L * HÒ1L ê 4D &;
plots = Table@Plot@erlangdist@kD, 8x, 0.5, Buckets + 0.5<,

PlotRange Ø Full, ColorFunction Ø HColorData@k + 2, "ColorList"D &L, PlotStyle Ø ThickD, 8k, 4, 4<D;
Print@"mean=", Mean@dD êê N, " max=", max, " last=", Last@hl@@1DDD, " Buckets=", Buckets, " ", pdfmax@2DD;
Return@8barchart, plots<D;

D;
data = 8nord, ovest, est, felina<;
coeff = 835, 70, 85, 35<;
hcoeff = 81, 0.8, 0.75, 0.9<;
H*coeff=835,70,85,40<;
hcoeff=81,0.8,0.75,0.9<;*L
shows = Table@Show@mkFit@data@@kDD, coeff@@kDD, hcoeff@@kDDDD, 8k, 1, Length@dataD<D;
GraphicsGrid@88shows@@1DD, shows@@2DD<, 8shows@@3DD, shows@@4DD<<D
mean=32.6467 max=39 last=100 Buckets=10 80.210217, 8x Ø 1.74999<<

mean=25.5267 max=29 last=60 Buckets=12 80.12613, 8x Ø 2.91666<<

mean=27.8167 max=25 last=65 Buckets=13 80.112528, 80.000265571 Ø 3.26917<<

mean=36.8907 max=9 last=80 Buckets=8 80.168173, 8x Ø 2.1875<<

Out[2171]=

2 barchart-securing.nb

(a) Travelling time distribution.

0 5 10 15 20 25 30 35 40 45 50 55
0

10

20

30

40

50

60

0 5 10 15 20 25 30 35 40 45 50 55
0

10

20

30

40

50

60

(b) Securing time distribution

Fig. 2. Data samples from which the general distributions were derived.

Figure 2 shows the travelling time distribution and securing time distribu-
tion, extracted from the company log (about 600 samples). We used the Erlang
distribution for data fitting, deriving using the company logs an Erlang(1.15, 3)
for the travelling time, and Erlang(1.6, 4) for the securing time. We do not have
precise timing for the repairing phase, but the company told us that the time
is usually in the order of 10-30 minutes. Hence, we modeled the repairing time
with a Uniform(10, 30).

Fig. 3. Simplified MRSPN of the multi-utility company repairmen problem used in [5].

The MRSPN model of the simplified multi-utility company is depicted in
Figure 3. Distribution functions are written as annotations of the general tran-
sition (black rectangles) in the graphical representation of the MRSPN. The
functions are passed verbatim to alphaFactory during the solution process. We
run the steady-state MRSPN solver on the model, for various client inter-arrival

Figure 3: Fitted data distributions.

Figure 3 shows the available data for the travelling times

and securing times of the operators, extracted from a com-
pany log and used to fit the model distributions. The re-
maining model parameters were derived from interviews and
discussions with the domain experts.

of call from a client of a detected leak of gas, a technician must be on-site in
less than 1 hour. When on site, the technician first secures the problem. Then,
he may decide to actually fix the problem, if there are no other open requests.
Otherwise, he leaves the site, sending an external plumber to do the fix.

In[2162]:= H* TRAVELLING TIMES - FELINAêSUD *L
felina = 81, 6, 6, 7, 10, 12, 13, 18, 21, 22, 25, 26, 28, 29, 29, 33, 34, 35,

36, 37, 37, 39, 39, 40, 40, 41, 42, 42, 47, 49, 49, 49.3, 51, 52, 53, 53, 54, 56, 61, 62, 63, 69, 70<;
est = 81, 2, 2, 4, 5, 9, 10, 11, 11, 12, 12, 13, 13, 13, 14, 15, 15, 16, 16, 16, 17, 17, 18, 18, 18, 19, 19, 20, 20, 20, 20,

21, 21, 22, 22, 22, 22, 22, 23, 23, 23, 23, 24, 24, 24, 24, 25, 25, 25, 25, 25, 25, 25, 26, 26, 27, 27, 27, 27, 27, 27,
27, 28, 28, 28, 28, 28, 28, 29, 29, 29, 30, 30, 30, 30, 31, 31, 31, 32, 32, 32, 32, 32, 33, 33, 33, 33, 34, 34, 35, 36,
36, 36, 37, 37, 37, 37, 37, 38, 38, 39, 40, 40, 41, 41, 42, 43, 44, 44, 44, 44, 47, 47, 49, 52, 52, 53, 55, 55, 62<;

ovest = 82, 2, 3, 3, 3, 5, 5, 6, 7, 7, 7, 7, 7, 9, 9, 10, 10, 10, 11, 12, 12, 12, 12, 12, 13, 14, 14, 14, 15, 15, 15, 15, 15,
16, 16, 16, 16, 17, 17, 17, 17, 17, 17, 18, 18, 18, 19, 19, 19, 19, 19, 20, 20, 20, 21, 22, 22, 22, 23, 23, 23, 23, 23, 23,
23, 23, 23, 23, 24, 24, 24, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 26, 26, 26, 26, 27, 27, 27, 27, 28, 28, 29, 29, 29,
29, 29, 29, 29, 29, 30, 30, 30, 30, 31, 31, 32, 32, 32, 32, 33, 33, 33, 33, 34, 35, 35, 36, 36, 37, 37, 37, 38, 38, 38, 38,
39, 40, 41, 41, 41, 41, 42, 42, 42, 43, 43, 43, 44, 46, 47, 47, 48, 49, 49, 51, 51, 52, 56, 58H*100,125,151,164*L<;

nord = 81, 2, 2, 4, 5, 5, 6, 6, 7, 10, 11, 11, 11, 12, 16, 16, 17, 17, 18, 18, 18, 19, 19, 19, 19, 19, 19, 20, 20, 20, 20, 21, 21,
21, 21, 22, 22, 22, 22, 22, 22, 23, 24, 24, 24, 25, 25, 25, 25, 25, 26, 26, 27, 27, 27, 27, 27, 28, 28, 28, 29, 29, 29, 29,
29, 29, 30, 30, 30, 31, 31, 31, 32, 32, 33, 33, 33, 34, 34, 35, 35, 35, 35, 35, 35, 36, 36, 36, 37, 37, 37, 37, 37, 37, 38,
38, 38, 38, 38, 38, 39, 39, 39, 39, 39, 40, 40, 40, 40, 41, 41, 41, 42, 42, 42, 42, 43, 44, 44, 44, 44, 44, 45, 45, 45, 46,
46, 46, 46, 46, 46, 46, 46, 47, 47, 48, 51, 52, 53, 53, 54, 55, 55, 56, 62, 63, 69, 73, 87, 90H*,106,106,121,134,183*L<;

mkFit@d_, c_, h_D := Module@8nSamp, pdf, Buckets, max, pdfmax, hl, barchart, mean, erlangdist, plots<,
nSamp = Length@dD;
Buckets = 10;
hl = HistogramList@d, BucketsD;
Buckets = Length@hl@@2DDD;
barchart = BarChart@hl@@2DD, ChartLabels Ø hl@@1DDD;
mean = c; H*Median@dDêêN;*L
pdf = PDF@ErlangDistribution@Ò1, Buckets ê mean * Ò1DD &;
max = Max@hl@@2DDD;
pdfmax = ErlangMaximum@Ò1, Buckets ê mean * Ò1D &;
erlangdist = Hmax ê First@pdfmax@Ò1DD * hL * Hpdf@Ò1DL@Hx - 0.5L * HÒ1L ê 4D &;
plots = Table@Plot@erlangdist@kD, 8x, 0.5, Buckets + 0.5<,

PlotRange Ø Full, ColorFunction Ø HColorData@k + 2, "ColorList"D &L, PlotStyle Ø ThickD, 8k, 4, 4<D;
Print@"mean=", Mean@dD êê N, " max=", max, " last=", Last@hl@@1DDD, " Buckets=", Buckets, " ", pdfmax@2DD;
Return@8barchart, plots<D;

D;
data = 8nord, ovest, est, felina<;
coeff = 835, 70, 85, 35<;
hcoeff = 81, 0.8, 0.75, 0.9<;
H*coeff=835,70,85,40<;
hcoeff=81,0.8,0.75,0.9<;*L
shows = Table@Show@mkFit@data@@kDD, coeff@@kDD, hcoeff@@kDDDD, 8k, 1, Length@dataD<D;
GraphicsGrid@88shows@@1DD, shows@@2DD<, 8shows@@3DD, shows@@4DD<<D
mean=32.6467 max=39 last=100 Buckets=10 80.210217, 8x Ø 1.74999<<

mean=25.5267 max=29 last=60 Buckets=12 80.12613, 8x Ø 2.91666<<

mean=27.8167 max=25 last=65 Buckets=13 80.112528, 80.000265571 Ø 3.26917<<

mean=36.8907 max=9 last=80 Buckets=8 80.168173, 8x Ø 2.1875<<

Out[2171]=

2 barchart-securing.nb

(a) Travelling time distribution.

0 5 10 15 20 25 30 35 40 45 50 55
0

10

20

30

40

50

60

0 5 10 15 20 25 30 35 40 45 50 55
0

10

20

30

40

50

60

(b) Securing time distribution

Fig. 2. Data samples from which the general distributions were derived.

Figure 2 shows the travelling time distribution and securing time distribu-
tion, extracted from the company log (about 600 samples). We used the Erlang
distribution for data fitting, deriving using the company logs an Erlang(1.15, 3)
for the travelling time, and Erlang(1.6, 4) for the securing time. We do not have
precise timing for the repairing phase, but the company told us that the time
is usually in the order of 10-30 minutes. Hence, we modeled the repairing time
with a Uniform(10, 30).

Fig. 3. Simplified MRSPN of the multi-utility company repairmen problem used in [5].

The MRSPN model of the simplified multi-utility company is depicted in
Figure 3. Distribution functions are written as annotations of the general tran-
sition (black rectangles) in the graphical representation of the MRSPN. The
functions are passed verbatim to alphaFactory during the solution process. We
run the steady-state MRSPN solver on the model, for various client inter-arrival

Figure 4: Parametric model of the multi-utility com-
pany.

Figure 4 shows the DSPN model used to study the param-
eter optimization problem. The results showed that with the
expected inter-arrival time of the client’s requests of about
30 minutes, four technicians are needed to reach the reg-
ulatory targets. Full details can be found in the original
paper.

3.2 Recent GreatSPN features
While GreatSPN is an old framework, several new addi-

tions and improvements were added in the last few years.
Recent features include, among others:

• The model checking STARMC that is based on multi-
valued decision diagrams [5] for state space encoding.

• The new Java-based GUI, that replaced the previous,
outdated one and which integrates a modern design
workflow [1].

• Support for the standard PNML format, both in in-
put and in output. The original custom model format
(known as net/def) is still used internally between the
various tools.

• GreatMod: platform for System Biology models [10].

• The DSPN solver [2], presented in the short case study
in Section 3.1.

3.3 Tool availability and distribution license
GreatSPN is open source (GPLv2) and it is available on

all major platforms (Linux, Windows, MacOS). Sources can
be downloaded from the project’s GitHub repository1, along
with the instructions to build the framework. Currently,
building GreatSPN requires to build its two main depen-
dencies first, Spot2 and Meddly3. To ease the installation,
a VirtualBox/VMware image is also available4, or in the
form of a Dockerfile to be used in an isolated container with
Docker. A special version of the framework tailored for mod-
eling and studying biological systems and integrated with
the R language is also available [10].

1https://github.com/greatspn/SOURCES
2https://spot.lrde.epita.fr/
3https://github.com/asminer/meddly
4http://www.di.unito.it/~greatspn/VBox/

4. CONCLUSIONS
GreatSPN is a feature-rich framework, with a modern in-

tegrated graphical user interface, that allows to model Petri
net models with a rich extended language, study their struc-
tural properties, define and compute performance indices.
The framework consists of more than 60 tools that have been
thoroughly used and tested. It works on all major modern
platforms, and its source code is open source. The recent
interface redesign has been devoted to simplify the interface
for students, newcomers and practitioners, while still retain-
ing a flexible and scriptable modular structure for research
and development purposes. It is still actively developed,
with new advanced functionalities still being added to the
core modules.

5. REFERENCES
[1] E. G. Amparore. A new GreatSPN GUI for GSPN

editing and CSL TA model checking. In International
Conference on Quantitative Evaluation of Systems,
pages 170–173. Springer, 2014.

[2] E. G. Amparore and S. Donatelli. DSPN-Tool: a new
DSPN and GSPN solver for GreatSPN. In 2010
Seventh International Conference on the Quantitative
Evaluation of Systems, pages 79–80. IEEE, 2010.

[3] E. G. Amparore and S. Donatelli. alphafactory: a tool
for generating the alpha factors of general
distributions. In International Conference on
Quantitative Evaluation of Systems, pages 36–51.
Springer, Cham, 2017.

[4] E. G. Amparore and S. Donatelli. GreatTeach: a tool
for teaching (stochastic) Petri nets. In International
Conference on Applications and Theory of Petri Nets
and Concurrency, pages 416–425. Springer, Cham,
2018.

[5] J. Babar, M. Beccuti, S. Donatelli, and A. Miner.
GreatSPN enhanced with decision diagram data
structures. In International Conference on
Applications and Theory of Petri Nets, pages 308–317.
Springer, 2010.

[6] S. Bernardi, S. Donatelli, and A. Horvath.
Compositionality in the GreatSPN tool and its
application to the modelling of industrial applications.
In University of Aarhus (Denmark. Citeseer, 2000.

[7] M. Bertoli, G. Casale, and G. Serazzi. JMT:
performance engineering tools for system modeling.
SIGMETRICS Perform. Eval. Rev., 36(4):10–15, 2009.

[8] P. Bonet, M. Catalina, and R. Puigjaner. A petri net
tool for performance modelling. PIPE (CLEI), 2(5),
2007.

[9] P. Buchholz and P. Kemper. A toolbox for the
analysis of discrete event dynamic systems. In
International Conference on Computer Aided
Verification, pages 483–486. Springer, 1999.

[10] P. Castagno, S. Pernice, G. Ghetti, M. Povero,
L. Pradelli, D. Paolotti, G. Balbo, M. Sereno, and
M. Beccuti. A computational framework for modeling
and studying pertussis epidemiology and vaccination.
BMC bioinformatics, 21(8):1–32, 2020.

[11] G. Clark, T. Courtney, D. Daly, D. Deavours,
S. Derisavi, J. M. Doyle, W. H. Sanders, and
P. Webster. The mobius modeling tool. In Proceedings

9th International Workshop on Petri Nets and
Performance Models, pages 241–250. IEEE, 2001.

[12] K. Jensen and L. M. Kristensen. Coloured Petri nets:
modelling and validation of concurrent systems.
Springer Science & Business Media, 2009.

[13] E. Kindler. The Petri Net Markup Language and
ISO/IEC 15909-2: Concepts, status, and future
directions. Entwurf komplexer
Automatisierungssysteme, 9:35–55, 2006.

[14] S. Kounev and C. Dutz. QPME: a performance
modeling tool based on queueing Petri nets.
SIGMETRICS Perform. Evaluation Rev., 36(4):46–51,
2009.

[15] R. Lai. Performance results for the CSMA/CD
protocol using GreatSPN. Journal of Systems and
Software, 37(1):75–90, 1997.

[16] M. Paolieri, M. Biagi, L. Carnevali, and E. Vicario.
The ORIS tool: quantitative evaluation of
non-markovian systems. IEEE Transactions on
Software Engineering, 2019.

[17] S. Pernice, M. Beccuti, G. Romano, M. Pennisi,
A. Maglione, S. Cutrupi, F. Pappalardo, L. Capra,
G. Franceschinis, M. De Pierro, et al. Multiple
Sclerosis disease: a computational approach for
investigating its drug interactions. In International
Meeting on Computational Intelligence Methods for
Bioinformatics and Biostatistics, pages 299–308.
Springer, 2019.

[18] R. J. Rodŕıguez, S. Bernardi, and A. Zimmermann.
An evaluation framework for comparative analysis of
generalized stochastic Petri net simulation techniques.
IEEE Transactions on Systems, Man, and
Cybernetics: Systems, 50(8):2834–2844, 2018.

[19] A. Zimmermann. Modelling and performance
evaluation with timenet 4.4. In International
conference on quantitative evaluation of systems,
pages 300–303. Springer, 2017.

