
Queueing Networks and Markov Chains Analysis with the
Octave queueing package

Moreno Marzolla
Dipartimento di Informatica–Scienza e Ingegneria (DISI), Università di Bologna

Mura Anteo Zamboni 7, I-40127 Bologna, Italy

moreno.marzolla@unibo.it

ABSTRACT
Queueing networks and Markov chains are a widely used
modeling notation that has been successfully applied to
many kind of systems. In this paper we describe the
queueing package, a free software package for product-form
queueing networks and Markov chains analysis written
in GNU Octave. The queueing package allows users
to compute performance measures of Markov chains,
single-station queueing systems and product- and some non
product-form Queueing Network (QN) models. We present
some practical examples showing how the queueing package
can be used for reliability analysis, capacity planning and
general systems modeling.

Keywords
Queueing Networks, Markov Chains, Mean Value Analysis

1. INTRODUCTION
QNs and Markov chains are widely used for capacity

planning, bottleneck analysis and performance evaluation
of many kinds of systems. QN analysis usually involves the
computation of steady-state performance measures, such
as throughput Xk, mean queue length Qk, mean response
time Rk and utilization Uk of each server k = 1, . . . ,K.
QN models can be evaluated either by simulation, or
using analytical and numerical techniques. Some classes
of QN models enjoy product-form solution [3], meaning
that steady-state performance measures can be computed
efficiently. Therefore, product-form QNs are attractive
when evaluating the same model with different parameters
(“what-if” analysis), or in all situations where models must
be evaluated at run-time.

Despite the vast literature on numerical solution tech-
niques for QN models (see [5] and references therein), only a
few tools are currently available and actively maintained [4,
7,9,14,23]. To further contribute to this area, we present the
queueing package, a software package for QN and Markov
chains analysis written in GNU Octave. GNU Octave is
an interpreted language for numerical computations that is
freely available for all major Operating Systems [13]. The
queueing package provides implementations of numerical al-
gorithms for transient and stationary analysis of discrete and
continuous Markov chains. single-station queueing systems,
and stationary analysis of some classes of product-form QNs.

Copyright is held by author/owner(s).

This paper is structured as follows. In Section 2 we illus-
trate the main design principles behind queueing. Section 3
gives an overview of the most important functions provided
by the package. Section 4 describes some practical usage ex-
amples in the area of reliability analysis (Section 4.1), bound
analysis of QNs (Section 4.2) and multiclass QN analysis
(Section 4.3). Concluding remarks are given in Section 5.

2. DESIGN PRINCIPLES
The queueing package is a collection of functions running

within the GNU Octave interpreter. The Octave environ-
ment provides the glue which allows complex models to be
built and evaluated programmatically. Therefore, the user
needs to “program” the model using the GNU Octave lan-
guage (there is no graphical user interface). This can be use-
ful, e.g., to do parametric evaluation or to perform ad-hoc
analysis. However, this flexibility imposes a steep learning
curve. Plans are underway to make the queueing package
more accessible through a GUI.

The queueing package has been used in the following
areas: (i) Incremental model development: queueing and
GNU Octave can be used for rapid prototyping and iterative
refinement of QN models. (ii) Modeling environment: large
and complex performance studies can be done quickly, since
models involving repetitive or embedded structure can be
easily defined. (iii) Queueing Network research: new algo-
rithms can be programmed and tested against existing ones.
The Octave language is well suited for implementing numeri-
cal algorithms which operate on arrays or matrices, of which
many QN algorithms are an instance of. (iv) Reference
implementations: as observed in [10], some large research
communities (e.g., linear algebra and parallel computing)
have a long history of sharing implementations of standard
algorithms. The queueing package aims at providing refer-
ence implementations of core QN algorithms. (v) Teaching:
the package is being used in some Universities to teach per-
formance modeling courses. Since the package implements
many textbook QN algorithms, students can immediately
put those algorithms to work to solve practical problems,
encouraging “learning by doing”.

Special care has been put to make queueing suitable for
general use. Functions are thoroughly documented and us-
age examples are provided for most of the functions. Docu-
mentation and demo blocks can be accessed at the Octave
prompt using the help() and demo() built-in commands,
e.g, help(ctmc) prints the documentation and demo(ctmc)

displays and executes all demo blocks for the ctmc() func-
tion. A complete, printable user manual is included with

Name Description

dtmc() Stationary/Transient state occupancy
probabilities

dtmcbd() Birth-death process
dtmcexps() Mean number of visits
dtmcfpt() First passage times
dtmcmtta() Mean time to absorption

Table 1: Some functions for discrete time Markov
chains analysis

the package.
One important aspect of any software, especially numer-

ical programs, is its correctness. The queueing package in-
cludes unit tests embedded as specially-formatted comments
within the source code. Tests are used to check the results
against reference values for models described in the liter-
ature, or against values computed by other tools. When
reference results are not available, cross-validation has been
employed by evaluating the same model with different func-
tions. For example, a closed QN might be analyzed us-
ing Mean Value Analysis (MVA) or the convolution algo-
rithm; both should produce compatible results, up to nu-
merical inaccuracies.

Given the large number of algorithms for analyzing queue-
ing networks that have been proposed in the literature, it
is infeasible – and probably not even desirable – to include
them all in the queueing package. Indeed, many numeri-
cal algorithms are of limited practical use, being concerned
with very specific types of networks. Therefore, a key design
decision has been to focus on implementations of the MVA
and convolution algorithms for (a subset of) BCMP net-
works [3]; of course, contributions of additional algorithms
from users are always welcome, some of which have already
been incorporated.

3. PACKAGE CONTENT
In this section we illustrate some of the functions con-

tained in queueing grouped by area: Markov chain analysis,
single station queueing systems and queueing networks.

3.1 Markov chains
A finite, discrete-time Markov chain is a set of N states

with an N × N transition probability matrix P such that
Pi,j is the transition probability from state i to state j.
A continuous-time Markov chain can be represented by a
stochastic matrix Q, where Qi,j is the transition rate from
state i to state j 6= i.

Table 1 lists some of the functions provided by queueing

to compute some performance measures on discrete Markov
chains. Corresponding functions for continuous chains are
available as well, substituting the prefix dtmc with ctmc

(e.g., ctmcexps() computes the mean sojourn time on a
continuous-time Markov chain).

Let πi(t) be the probability that the system is in state
i ∈ {1, . . . , N} at time t. Vector π(t) = (π1(t), . . . , πN (t))
denotes the state occupancy probabilities at time t.

Under certain conditions [5] a Markov chain has a
stationary distribution π which is independent from the
initial occupancy probability π(0). The stationary distri-
bution can be computed with p = dtmc(P) (for discrete

chains) or q = ctmc(Q) (for continuous chains). The
same function can be invoked with three parameters,
e.g., pn = dtmc(P,n,p0) to compute the state occupancy
probability vector pn at step n given the initial probabilities
p0 at step 0. Function ctmc() can similarly be used for
continuous chains.

The mean time to absorption is the average number of
steps (time, in the continuous case) it takes to reach an ab-
sorbing state, given the initial occupancy probability vector
π(0). A state i is absorbing if it has no outgoing transitions.
The first passage time Mi,j is defined as the average num-
ber of transitions (time, in case of continuous chains) before
state j is visited for the first time, starting from state i. Fi-
nally, the mean number of visits Ln,j is the average number
of visits to state j during the first n transitions; the equiv-
alent metric for continuous Markov chains is called expected
sojourn time. These parameters are useful for reliability
analysis, as will be demonstrated in Section 4.1.

3.2 Single station queueing systems
The queueing package provides functions for analyzing

several types of single station queueing systems [5, 18]:
M/M/m, M/M/m/k, M/M/∞, asymmetric M/M/m (this
system contains m service centers with possibly different
service rates), M/G/1 (general service time distribution)
and M/Hm/1 (Hyperexponential service time distribu-
tion). For each kind of system, the following steady-state
performance measures can be computed: utilization U ,
mean response time R, average number of requests in the
system Q and throughput X.

3.3 Queueing Networks
Table 2 lists some of the functions for QN analysis

provided by the queueing package, which can be roughly
grouped in three classes: algorithms for bound analysis,
product-form and non product-form QNs.

Model Specification. A general multiclass network is spec-
ified in terms of the following parameters: λc,i (open net-
works only) external arrival rate of class c requests to service
center i; Nc (closed networks only) total number of class c
requests in the system: Zc (closed networks only) external
delay (“think time”) experienced by class c requests; Sc.i

mean service time of class c requests at center i; Pr,i,s,j

probability that a class r request that completes service at
center i is routed to class j as a class s request; Vc,i mean
number of visits of class c requests to center i. The same
parameters are used for single-class models, by dropping di-
mensions associated with classes.

Bound Analysis. Bound analysis allows efficient com-
putation of upper and/or lower limits on the system
throughput X and response time R, from which bounds
on throughput and response times of individual servers can
be derived. Performance bounds are useful where accuracy
can be sacrificed in favor of speed, e.g., when doing on-line
performance tuning of running systems. The queueing

package provides algorithms for computing several classes
of bounds: Asymptotic Bounds (AB) [12] for open and
closed networks, Balanced System Bounds (BSB) [24] for
open and closed networks, and Geometric Bounds (GB) [11]
for closed networks; single- and multiclass networks are
supported. The Composite Bounds (CB) [17] technique for

Function Name Description

qnosaba() Asymptotic Bounds for open networks [12]
qncsaba() Asymptotic Bounds for closed Networks [12]
qnosbsb() Balanced System Bounds for open networks [24]
qncsbsb() Balanced System Bounds for closed networks [24]
qncsgb() Geometric Bounds for closed networks [11]

qnopensingle() Analysis of open Jackson networks [16]
qnopenmulti() Analysis of open, multiclass product form networks

qncsconv() Convolution algorithm for closed, single class QNs with fixed-rate servers [6]
qncsconvld() Convolution algorithm for closed, single class QNs with general load dependent servers

qncsmva() MVA for closed, single class networks with fixed-rate and multiple server nodes [20]
qncsmvald() MVA for closed, single class networks with general load dependent servers
qncscmva() Conditional MVA for closed, single class networks with a load dependent server [8]
qncmmva() MVA for closed, multiclass networks with fixed-rate and multiple server nodes [20,22]

qncmmvabs() Approximate MVA for closed, multiclass networks with fixed-rate servers using
Schweitzer’s approximation [21]

qnmix() MVA for mixed networks with fixed-rate servers [22]
qncsmvablo() Approximate MVA for closed, single class networks with blocking [1]

qnmarkov() Exact analysis of closed, single class networks with blocking by direct solution of the
underlying Markov chain

Table 2: Some functions for QN analysis

closed multiclass networks is available as well.

Product-Form QNs. The queueing package allows
the computation of exact and approximate steady-state
performance measures of open and closed product-form
networks. Networks can have a single class of requests, or
multiple, independent request classes. Open networks are
handled by the qnos() (single customer class) and qnom()

(multiple customer classes) functions. For single-class
closed networks, the MVA [20] and convolution [6] algo-
rithms are implemented by the qncsmva() and qncsconv()

functions, respectively. Both support First-Come First-
Served (FCFS), Last-Came First-Served, Preemptive
Resume (LCFS-PR), Processor Sharing (PS) and Infinite
Server (IS) nodes; single and multiple server FCFS nodes
are handled. For efficiency reasons, and to make the code
more readable, the convolution and MVA algorithms for
single class networks with general load-dependent service
times are implemented in separate function qncsconvld()

and qncsmvald(), respectively.
Product-form closed networks with multiple classes of re-

quests can be analyzed using qncmmva(). Class switching
is supported: requests are allowed to change class after
completing service. Due to its computational cost, multi-
class MVA is appropriate for networks with small population
and limited number of chains. For larger networks, approxi-
mations based on the MVA have been proposed in the liter-
ature; function qncmmvabs() implements the approximation
scheme by Bard and Schweitzer [2, 19, 21]. Finally, mixed
multiclass Product-form Queueing Network (PFQN) [3] are
handled by the qnmix() function. In mixed networks, both
open and closed classes can be present at the same time.

Non product-form QNs. The queueing package includes
a few algorithms for evaluating closed single class net-
works with blocking. In blocking networks, queues have
a maximum capacity: a request joining a full queue will
block until a slot in the destination node becomes avail-

2 1 0

RC

RB

2cγ

2(1− c)γ α

β

δ

γ

δ

Figure 1: Reliability Model

able. Function qncsmvablo() implements the MVABLO
algorithm [1] which is based on an extension of MVA.
MVABLO computes approximate stationary performance
measures for closed, single class networks with Blocking
After Service (BAS) blocking. According to the BAS
discipline, a request joining a full queue blocks the source
until a slot is available at the destination.

4. EXAMPLES
In this section we give three practical usage examples of

queueing, for reliability analysis using Markov chains, ca-
pacity planning using bound analysis, and multiclass QNs
analysis.

4.1 Reliability Analysis with Markov chains
Figure 1 shows a reliability model of a multiprocessor sys-

tem described in [15]. There are N = 2 processors, each
subject to failures with Mean Time To Failure (MTTF) 1/γ.
States n ∈ {0, 1, 2} denote that there are n working proces-
sors. If one processor fails, it can be recovered (state RC)
with probability c; recovery takes time 1/β. When recovery
is not possible, a reboot is required (state RB), which brings
down the whole system for time 1/α > 1/β. The mean time
to repair a failed processor is 1/δ.

If we enumerate the states as {2, RC,RB, 1, 0}, we can
define the model and compute the steady state occupancy
probability vector using the following Octave code (we use

a, b, g, d instead of α, β, γ, δ; values are from [15]):

mm = 60 ; hh = 60∗mm; dd = 24∗hh ; yy = 365∗dd ;
a = 1/(10∗mm) ; # du r a t i o n o f r eboo t (10 min)
b = 1/30 ; # r e c o n f i g u r a t i o n t ime (30 sec)
g = 1/(5000∗ hh) ; # p r o c e s s o r MTTF (5000 h)
d = 1/(4∗ hh) ; # p r o c e s s o r MTTR (4 h)
c = 0 . 9 ; # re c o v e r y p r o b a b i l i t y
[TWO,RC,RB,ONE,ZERO] = dea l (1 , 2 , 3 , 4 , 5) ; # s t a t e s
2 RC RB 1 0
Q = [−2∗g 2∗ c∗g 2∗(1−c)∗ g 0 0 ; # 2

0 −b 0 b 0 ; # RC
0 0 −a a 0 ; # RB
d 0 0 −(g+d) g ; # 1
0 0 0 d −d] ; # 0

p = ctmc (Q) ;

which gives p = (9.9839 × 10−1, 2.9952 × 10−6, 6.6559 ×
10−6, 1.5974 × 10−3, 1.2779 × 10−6). From these values we
can compute other availability metrics, e.g., the average time
spent over a year in states RC, RB and 0:

p (RC)∗ yy/mm # minutes / yea r spen t i n RC
=> 1 .5743
p (RB)∗ yy/mm # minutes / yea r spen t i n RB
=> 3 .4984
p (ZERO)∗ yy/mm # minutes / yea r spen t i n 0
=> 0.67169

that is, over a year the system is unavailable for about 1.57
minutes due to reconfigurations, 3.50 minutes due to reboots
and 0.67 minutes due to failure of both processors.

We can compute the Mean Time Between Fail-
ures (MTBF) of the whole system, defined as the average
duration of continuous system operation. We assume that
the system starts in state 2, and we consider the system
operational also when in the reconfiguration state. There-
fore, the set of operational states is {2, 1, RC}. If we make
states 0 and RB absorbing by removing all their outgoing
transitions, the MTBF is the mean time to absorption of
the (modified) Markov chain. The ctmcmtta() function can
be used to compute the mean time to absorption:

Q(ZERO,:) = Q(RB,:) = 0; # make {0, RB} absorbing

p0 = [1 0 0 0 0]; # initial occupancy prob.

MTBF = ctmcmtta(Q, p0)/yy # MTBF (years)

=> 2.8376

from which we get a MTBF of 2.84 years.

4.2 Bound Analysis
Let us consider a simple model of a scientific computing

cluster, where a closed population of N jobs process data
stored in a tape library. A disk-based cache is used to reduce
the access of the (slow) tape library. A job reads the data
it needs from disk; in case of a cache miss, which happens
with probability 1− p, the data is copied from tape to disk
before the job is allowed to proceed.

The system can be modeled by the closed network shown
in Figure 2. There are two FCFS servers representing the
tape library and disk cache, respectively. A delay center (IS
node) represents the pool of CPUs; we assume that there
are enough CPUs so that jobs are always executed as soon
as they are ready. We denote with Z the mean duration of
each job, with S1 the mean tape transfer time and with S2

the mean disk transfer time.
Suppose that budget constraints allows us to choose be-

tween two different system configurations. Configuration (a)

Figure 2: Queueing model of Tape Farm

p S1 S2 Z

Conf. (a) 0.9 300s 40s 1800s
Conf. (b) 0.75 300s 30s 1800s

Table 3: Parameters for the model in Figure 2

uses a large cache of inexpensive disks; this means that the
cache hit ratio p is higher, but disk transfer times are larger
because disks are slower. Configuration (b) uses a smaller
cache of fast disks; in this scenario, the cache hit ratio is
smaller, but disk transfer times are lower. The parameters
for both scenarios are reported in Table 3.

We can perform a bound analysis to understand which
configuration provides the better throughput when a large
number of jobs is present. This can be done with the fol-
lowing Octave code:

Con f i g u r a t i o n (a) # Con f i g u r a t i o n (b)
S = [300 4 0] ; S = [300 3 0] ;
p = . 9 ; p = . 7 5 ;
P = [0 1 ; \ P = [0 1 ; \

1−p p] ; 1−p p] ;
V = q n c s v i s i t s (P) ; V = q n c s v i s i t s (P) ;
DA = S .∗V DB = S .∗V
XA = 1/max(DA) ; XB = 1/max(DB) ;

The instruction V=qncsvisits(P) computes the visit ra-
tios V from the routing matrix P; the visit ratio Vk at cen-
ter k satisfies the equation Vk =

∑N
k=1 Pj,kVj . The visit

ratios are used to compute the service demands DA and DB

for configurations (a) and (b), respectively. The service de-
mand Dk at center k is defined as Dk = SkVk, and rep-
resents the total time spent by a request on each server.
Finally, the throughputs XA and XB are the inverse of the
maximum service demand. We get XA = 2.5× 10−3 jobs/s,
XB = 3.3× 10−3 jobs/s.

Figure 3 shows the upper bounds (continuous line) on the
system throughput X computed by qncsbsb(). The dashed
lines are the exact values computed using the MVA as im-
plemented in qncsmva(). We conclude that scenario (b) –
large pool of slow disk – allows higher throughput with a
sufficiently large number of concurrent jobs.

4.3 Multiclass QN Analysis
We now consider the more complex model of scientific

compute farm shown in Figure 4. The system has three
classes of jobs that access data stored on four disk servers
and three tape libraries. Each job spends some time doing
CPU-intensive computations and then accesses data on ex-
ternal storage. Tape libraries and disk servers are modeled
as M/M/1 service centers.

Let N be the total number of jobs. Let β = (β1, β2, β3) be
the population mix of the network, where βc is the fraction
of class c jobs, 0 ≤ βc ≤ 1 and β1 + β2 + β3 = 1. Thus, the

0 20 40 60 80 100
0

0.001

0.002

0.003

0.004

Number of requests

S
ys

te
m

 t
h
ro

u
g
h
p
u
t
(j

o
b
s/

s)

(a) Large pool of slow disks

(b) Small pool of fast disks

Figure 3: System throughput X for the two config-
urations. The continuous line is the upper bound,
dashed line is the exact value computed using MVA

Figure 4: Multiclass closed network model of a sci-
entific compute farm.

number of class c jobs is Nc = βcN rounded to the nearest
integer. Let Dc,i be the service demand of class c requests at
center i (recall that the service demand is the product of the
mean service time and the number of visits, Dc,i = Sc,iVc,i).
Let Zc be the average duration of a CPU burst of a class c
job. The parameter values are shown in Table 4.

We consider N = 300 jobs, and we want to study how dif-
ferent population mixes β affect the system throughput X.
The following GNU Octave code computes the per-class uti-
lizations Uc,i, response times Rc,i, mean queue lengths Qc,i

and throughput Xc,i when β = (0.2, 0.3, 0.5):

N = 300 ; # n . o f j o b s
S = [100 140 200 30 50 20 10 ; # demands

180 10 70 10 90 130 30 ;
280 160 150 90 20 50 1 8] ;

Z = [2400 1800 2100] ; # CPU bu r s t s
V = ones (s i z e (S)) ; # n . o f v i s i t s
m = ones (1 , columns (S)) ; # n . o f s e r v e r s
beta = [0 . 2 , 0 . 3 , 0 . 5] ; # popu l a t i o n mix

pop = round (N∗beta) ; pop (3) = N−pop(1)−pop (2) ;
[U R Q X] = qncmmva(pop , S , V, m, Z) ;
X sys = sum (X(: , 1) . / V (: , 1)) ; # System tput

The system throughput of a multiclass network is Xsys =∑
cXc, where Xc is the class c throughput. The values of Xc

can be computed from the individual servers throughput
Xc,i as Xc =

∑
iXc,i/Vc,i. In the example above we get

Xsys = 0.0053793.

Param Description Class 1 Class 2 Class 3

Dc,1 Tape Server 100 180 280
Dc,2 Tape Server 140 10 160
Dc,3 Tape Server 200 70 150
Dc,4 Disk Server 30 10 90
Dc,5 Disk Server 50 90 20
Dc,6 Disk Server 20 130 50
Dc,7 Disk Server 10 30 18
Zc Cpu farm 2400 1800 2100

Table 4: Parameters for the model in Figure 4

β2
β

1

System throughput

0.2 0.4 0.6 0.8

0.2

0.4

0.6

0.8

0.0045

0.005

0.0055

0.006

0.0065

0.007

Figure 5: System throughput X as a function of the
population mix β = (β1, β2, 1− β1 − β2). (Best viewed
in color)

Even on such a small network, qncmmva() requires
about 170s of CPU time on an Intel i7-4790 CPU at
3.60GHz running Ubuntu Linux 18.04 with GNU Octave
5.1. This makes the multiclass MVA algorithm impractical
for this type of study, since analyzing many population
mixes would require a large amount of time. We therefore
resort to the much faster Bard-Scweitzer approximation,
realized by function qncmmvabs().

Figure 5 shows the system throughput for different pop-
ulation mixes. Each square corresponds to a combinations
of β1, β2, β3 = N − β1 − β2. Contour lines show the regions
of the parameter space of equal throughput; the popula-
tion mixes producing the maximum throughput are those
towards the center of the image.

Note that Figure 5 can be computed in about five seconds
using qncmmvabs() on the same system above, i.e., orders
of magnitude faster than the time required by the multi-
class MVA implementation from function qncmmva().

5. CONCLUSIONS
In this paper we presented the queueing package for

GNU Octave. The package provides functions for analyz-
ing Markov Chains, single-station queueing systems and
product- and some non product-form QN models; exact,
approximate and bound analysis of are supported.

The queueing package is available at https://octave.

sourceforge.io/queueing/index.html and can be used,
modified and distributed under the terms of the GNU
General Public License (GPL) version 3 or later.

https://octave.sourceforge.io/queueing/index.html
https://octave.sourceforge.io/queueing/index.html

6. REFERENCES
[1] I. F. Akyildiz. Mean Value Analysis for Blocking

Queueing Networks. IEEE Trans. Softw. Eng.,
1(2):418–428, Apr. 1988.

[2] Y. Bard. Some Extensions to Multiclass Queueing
Network Analysis. In Proc. 4th Int. Symp. on
Modelling and Performance Evaluation of Computer
Systems, volume 1, pages 51–62, Feb. 1979.

[3] F. Baskett, K. M. Chandy, R. R. Muntz, and F. G.
Palacios. Open, Closed, and Mixed Networks of
Queues with Different Classes of Customers. JACM,
22(2):248–260, 1975.

[4] M. Bertoli, G. Casale, and G. Serazzi. JMT:
performance engineering tools for system modeling.
SIGMETRICS Performance Evaluation Review,
36(4):10–15, 2009.

[5] G. Bolch, S. Greiner, H. de Meer, and K. Trivedi.
Queueing Networks and Markov Chains: Modeling and
Performance Evaluation with Computer Science
Applications. Wiley, 1998.

[6] J. P. Buzen. Computational Algorithms for Closed
Queueing Networks with Exponential Servers. Comm.
ACM, 16(9):527–531, Sept. 1973.

[7] P. Canadilla. queueing: Analysis of Queueing
Networks and Models, 2019. R package version 0.2.12.

[8] G. Casale. A note on stable flow-equivalent
aggregation in closed networks. Queueing Syst. Theory
Appl., 60:193–202, December 2008.

[9] G. Casale. Automated Multi-paradigm Analysis of
Extended and Layered Queueing Models with LINE.
In Companion of the 2019 ACM/SPEC International
Conference on Performance Engineering, ICPE ’19,
pages 37–38, New York, NY, USA, 2019. ACM.

[10] G. Casale, M. Gribaudo, and G. Serazzi. Tools for
Performance Evaluation of Computer Systems:
Historical Evolution and Perspectives. In Performance
Evaluation of Computer and Communication Systems.
Milestones and Future Challenges. IFIP WG 8.3/7.3
Int. Workshop, PERFORM 2010, volume 6821 of
LNCS, pages 24–37. 2011.

[11] G. Casale, R. R. Muntz, and G. Serazzi. Geometric
Bounds: a Non-Iterative Analysis Technique for
Closed Queueing Networks. IEEE Trans. on
Computers, 57(6):780–794, June 2008.

[12] P. J. Denning and J. P. Buzen. The Operational
Analysis of Queueing Network Models. ACM Comput.
Surv., 10(3):225–261, Sept. 1978.

[13] J. W. Eaton, D. Bateman, S. Hauberg, and
R. Wehbring. GNU Octave version 5.2.0 manual: a
high-level interactive language for numerical
computations, 2020. Accessed on 2020-12-23.

[14] N. J. Gunther. The Practical Performance Analyst:
Performance-by-Design Techniques for Distributed
Systems. McGraw-Hill, Inc., New York, NY, USA,
1997.

[15] D. I. Heiman, N. Mittal, and K. S. Trivedi.
Dependability modeling for computer systems. In
Proc. Ann. Reliability and Maintainability Symposium,
pages 120–128, 1991.

[16] J. R. Jackson. Jobshop-Like Queueing Systems.
Manage. Sci., 50(12 Supplement):1796–1802, 2004.

[17] T. Kerola. The composite bound method for

computing throughput bounds in multiple class
environments. Perf. Eval., 6(1):1–9, Mar. 1986.

[18] L. Kleinrock. Queueing Systems: Volume I–Theory.
Wiley Interscience, New York, 1975.

[19] E. D. Lazowska, J. Zahorjan, G. S. Graham, and
K. C. Sevcik. Quantitative System Performance:
Computer System Analysis Using Queueing Network
Models. Prentice Hall, 1984.

[20] M. Reiser and S. S. Lavenberg. Mean-Value Analysis
of Closed Multichain Queuing Networks. J. of the
ACM, 27(2):313–322, Apr. 1980.

[21] P. Schweitzer. Approximate analysis of multiclass
closed networks of queues. In Proc. Int. Conf. on
Stochastic Control and Optimization, June 1979.

[22] H. Schwetman. Implementing the Mean Value
Algorithm for the Solution of Queueing Network
Models. Technical Report CSD-TR-355, Purdue
University, Feb. 5 1982.

[23] K. S. Trivedi and R. Sahner. SHARPE at the Age of
Twenty Two. SIGMETRICS Performance Evaluation
Review, 36(4):52–57, Mar. 2009.

[24] J. Zahorjan, K. C. Sevcick, D. L. Eager, and B. I.
Galler. Balanced Job Bound Analysis of Queueing
Networks. Comm. ACM, 25(2):134–141, Feb. 1982.

	Introduction
	Design Principles
	Package Content
	Markov chains
	Single station queueing systems
	Queueing Networks

	Examples
	Reliability Analysis with Markov chains
	Bound Analysis
	Multiclass QN Analysis

	Conclusions
	References

