
TAPAS: a Tool for Stochastic Evaluation of Large
Interdependent Composed Models with Absorbing States

�Giulio Masetti,
ISTI-CNR, Pisa, Italy,

giulio.masetti@isti.cnr.it,
Leonardo Robol,

University of Pisa,
leonardo.robol@unipi.it

Silvano Chiaradonna,
Felicita Di Giandomenico,

ISTI-CNR, Pisa,Italy,
silvano.chiaradonna,felicita.digiandomenico@isti.cnr.it

ABSTRACT
TAPAS is a new tool for efficient evaluation of dependabil-
ity and performability attributes of systems composed of
many interconnected components. The tool solves homoge-
neous continuous time Markov chains described by stochas-
tic automata network models structured in submodels with
absorbing states. The measures of interest are defined by
a reward structure based on submodels composed through
transition-based synchronization. The tool has been con-
ceived in a modular and flexible fashion, to easily accom-
modate new features. Currently, it implements an array of
state-based solvers that addresses the state explosion prob-
lem through powerful mathematical techniques, including
Kronecker algebra, Tensor Trains and Exponential Sums. A
simple, yet representative, case study is adopted, to present
the tool and to show the feasibility of the supported meth-
ods, in particular from memory consumption point of view.

Keywords
Stochastic modeling and evaluation, stochastic automata
network, absorbing states, dependability, performability, state
explosion problem

1. INTRODUCTION AND RELATED WORK
This paper proposes the tool TAPAS (Tensor Algorithms

for Performability Analysis of large Systems) for efficient
evaluation of dependability and performability attributes of
complex systems composed of a large number of intercon-
nected components. TAPAS solves homogeneous Continu-
ous Time Markov Chains (CTMCs) described by Stochastic
Automata Network (SAN) [1] models structured in submod-
els with absorbing states.

The measures of interest [2] supported by TAPAS are
k-moments (e.g., mean or variance) of: 1) instant-of-time
or interval-of-time reward variables to absorbing state, or
2) conditional interval-of-time reward variables to absorb-
ing state, given that the CTMC eventually absorbs into a
subset of states. They are defined by a reward structure
based on SAN automata (submodels) composed through
transition-based synchronization. Examples of such mea-
sures are: 1) the reward accumulated to absorption in the
set of all absorbing states, e.g., the Mean Time To Fail-

Copyright is held by author/owner(s).

ure (MTTF) or the Mean Reward To Absorption (MRTA),
2) the conditional reward accumulated to absorption, given
that the model eventually absorbs into a subset of states, or
3) the probability that the CTMC eventually absorbs into a
set of states. It is possible to show [3, 4] that these measures
can be evaluated solving a sequence of linear systems, which
may require manipulating both large matrices and vectors.

In the context of stochastic state-space models, system
complexity and largeness are typically managed through the
modularity and composition of individual submodels [5, 6,
7, 8, 9]. This offers advantages in terms of both model def-
inition and numerical evaluation. However, even when the
overall system model results from the composition of sub-
models with a small number of states, increasing the number
of submodels or the interdependencies among them makes
the numerical analysis very challenging for what concerns
the state-space explosion.

An approach to tackle this problem consists in represent-
ing and manipulating the state-space implicitly, i.e., not list-
ing the states, but describing them through more complex
data structures [10, 11].

In this direction, recently the new efficient numerical so-
lution methodology KAES (Kronecker Algebra Exponen-
tial Sums) for CTMCs with absorbing states has been pro-
posed [3, 4], resorting to powerful mathematical technolo-
gies such as Kronecker algebra [12], Tensor Trains [13] and
Exponential sums [14]. Trough Kronecker algebra [12] it is
possible to implicitly manipulate the CTMC under analysis
and the associated reward structure (i.e., the CTMC reward
model), when the CTMC is defined as a SAN [1] composed
through transition-based synchronization of stochastic au-
tomata [3, 4]. As shown in [3, 4], through Tensor Trains
algebra both matrices and vectors can be implicitly rep-
resented. The Exponential Sums [14] can be used by the
preconditioner to get an approximation of the linear system
solution (as shown in Section 6 with the method amen) or
to solve the system together with an ad hoc iteration step
deduced from a (non-regular) splitting in order to advance
over the method presented in [3] (as described in Section 6
with the methods tt-regular-splitting and tt-expsumst).
TAPAS implements an array of state-based solvers that

addresses the state explosion problem, based on variants
of KAES, including methods that have not been published
yet and also some methods that construct explicitly the
state-space (these last, mainly for cross-validation and per-
formance comparison purposes), as shown in Table 2.

TAPAS has been implemented in the MATLAB evalua-



tion environment [15] and provides a library of MATLAB
functions. It has been conceived in a modular and flexible
fashion, to be easily expanded to incorporate new features.

A simple, yet representative, case study is adopted as a
running example (Figure 1) for the proposed tool.

TAPAS advances current tools for conducting similar anal-
yses, which are based on implicit representation and manip-
ulation of the state space, by extending the implicit repre-
sentation to the solution vector, in addition to the descriptor
matrix. To the best of authors’ knowledge, TAPAS is the
first tool to tackle complete implicit model representation.
Moreover, it addresses the analysis of limiting properties of
CTMCs with absorbing states, which is another aspect that
makes TAPAS rather peculiar with respect to existing al-
ternatives for the analysis contexts of interest in this paper.
Among the most popular tools, those that appear more re-
lated to TAPAS are GreatSPN1 [16], Möbius2 [17], Nsolve3

[18], PEPS4 [10] and SHARPE5 [19]. However, as already
pointed out, the lower degree of implicit representation they
allow leaves open further performance improvement, which
is actually the gap that TAPAS attempts to cover.

TAPAS is an experimental and academic open-source tool
and can be downloaded from GitHub under BSD license.
Documentation, background and examples are available at
https://github.com/numpi/tapas. The implemented meth-
ods at the moment rely on the TT-Toolbox [13].

The rest of the paper is organized as follows. In Sec-
tion 2, the context and the measures of interest are de-
scribed. In Section 3, a brief recap on the SAN formalism
is provided and the SAN model used as case study is intro-
duced. Section 4 describes the format of the model represen-
tation required by the tool, based on the defined case study.
A tutorial (more details are in examples/tutorial.m inside
the TAPAS package) on how to run the model is in Section 5.
The implemented methods are described in Section 6. Sec-
tion 7 is a teaser of performance potentialities of TAPAS.
Conclusions and future work are sketched in Section 8.

2. CONTEXT
Consider the time-homogeneous CTMC {X(t) ∈ S, t ≥

0} with discrete (finite) state space S = T ⊔ A, where T is
the set of transient states and A the set of absorbing ones.
In reliability models, X(0) is usually a “working” or “up”
state with probability 1, thus the initial probability vector
π0 has a single nonzero entry, the one indexed by X(0). In
general, the entries of π0 can be nonnegative reals that sums
to one.

Among the dependability properties or performability mea-
sures that are usually of interest, here the focus is on those
involving limiting behavior of X, such as the MTTF or the
MTTF conditioned to the event “X has been absorbed in
B ⊂ A”. More formally, the performability measures [20,
2] that can be evaulated through TAPAS are those defined

through a given reward vector r ∈ R|S| with zero entries on

1https://github.com/greatspn/SOURCES.git
2https://www.mobius.illinois.edu
3https://ls4-www.cs.tu-dortmund.de/download/
buchholz/Programs/Nsolve
4http://www-id.imag.fr/Logiciels/peps
5http://sharpe.pratt.duke.edu

A, in terms of the moments of the reward variable

Y∞ :=

∫ ∞

0

rX(t)dt,

where X selects which entry of r contributes to the integral.
The moments will be called Mk := E

[
Y k
∞
]
. Of particular

interest are the MRTA M1, the variance

V ar(Y∞) = M2 −
(
M1

)2
(1)

and possibly an approximation of order k of the distribution
of Y∞.
Consider systems where there are multiple causes of fail-

ure or (in a safety critical system) can be relevant to dis-
tinguish between safe and unsafe shutdown or (in a fault-
tolerant system) can be relevant to distinguish a failure due
to imperfect coverage from a failure due to the exhaustion
of redundancy [21]. Thus, given a subset of absorbing states
B ⊂ A, define Y∞|B as the conditional reward accumulated
until absorption given that some absorbing markings B are
reached. The measures of interests are then the conditional
mean MRTA|B := E[Y∞|B] and the probability πB(∞) that
the model eventually absorbs into B.

It is possible to show [4] that all the mentioned measures
can be evaluated solving a sequence of linear systems fol-
lowed by elementary post processing operations. In partic-
ular, Mk requires the solution of{

(Q− S)x(1) = r,

(Q− S)x(i) = diag(r)x(i−1), for i = 2, . . . , k,

followed by the dot product

Mk = k!(−1)kπ(0) · x(k), (2)

πB(∞) the solution of

(Q− S)x(1) = QeB

followed by the dot product

πB(∞) = −π(0) · x(1),

and MRTA|B the solution of{
(Q− S)x(1) = QeB,

(Q− S)x(2) = diag(r)x(1),

followed by two dot products and a division

MRTA|B =
π(0) · x(2)

−π(0) · x(1)
, (3)

where S is a shift matrix (two ways to define it are shown in

[3, 4]), x(i) are column vectors and eB is the column vector
with binary entries whose components are nonzero only if
indexed by the elements of B.

When S grows big, it is not feasible to explicitly list all
the states and assemble π0, r and Q, even in a sparse form.
Thus, both the matrix and the vectors have to be treated im-
plicitly, meaning that only chunks of information are stored
and manipulated by the linear system solvers to evaluate
the measures of interest.

https://github.com/numpi/tapas
https://github.com/greatspn/SOURCES.git
https://www.mobius.illinois.edu
https://ls4-www.cs.tu-dortmund.de/download/buchholz/Programs/Nsolve
https://ls4-www.cs.tu-dortmund.de/download/buchholz/Programs/Nsolve
http://www-id.imag.fr/Logiciels/peps
http://sharpe.pratt.duke.edu


3. MODELING FORMALISM
In order to give an implicit representation of the CTMC

under study, the SAN [1] formalism is adopted to define
the CTMC model. The SAN reward model is obtained by
extending the SAN model with the reward vector r.

In our context, a SAN consists of interacting individual
stochastic automata (submodels) and each individual au-
tomaton represents a CTMC with absorbing states. Accord-
ingly, individual automata are defined by states and changes
of states, i.e., (exponential) transitions between pairs of
states. Interactions among automata occur through tran-
sition synchronization. A transition between two states can
be local to a given automaton or of synchronization (shared)
among different automata. A local transition governs the
manner in which a single automaton moves from one state to
the next. A synchronization transition shared among differ-
ent automata governs the manner in which all the involved
automata move simultaneously from a state to the next, i.e.,
in a single atomic transition. A transition of an automaton
can be synchronized with one or more transitions of another
automaton, and vice versa. Transitions are represented with
the same label. An automaton moves from a state to the
next by means of a synchronization transition ξ, if all the
automata where at least one synchronization transition ξ is
defined move from a state to the next by means of a transi-
tion ξ. The state of an automaton at any time t is given by
the state of each of its constituent automata.

Formally, the SAN model is structured in n interacting
submodels, namely

X̃(t) := (X(1)(t), . . . , X(n)(t)),

where X(i)(t) ∈ S(i) and S(1) × · · · × S(n) is the poten-
tial state-space. An example of SAN model composed by
n = 3 interacting submodels A1, A2 and A3 is the state-
transition diagram shown in Figure 1, where each state is
represented by a circle, and local and synchronization tran-
sitions are represented as filled and dashed arrows, respec-
tivley. Transition rates, as well as the rate and label pair,
are associated with local and synchronization transitions,
respectively. Thus, in Figure 1, by means of the transition ξ

U

E

F

λ1 µ1

δ1, ξ1

A1

U

E

F

δ2, ξ2 µ2

δ1, ξ1

A2

U

E

F

B

δ2, ξ2

δ1, ξ1

µ3

δ1, ξ1

θ3

δ1, ξ1

δ 2
, ξ

2

A3

Figure 1: SAN model example. Dashed arrows are
synchronization transitions.

with rate δ1, the submodels A1, A2 and A3 can move from
the state E to F , or alternatively, the submodels A1 and A2

can move from E to F when the submodel A3 moves from
U to F or from B to B.

With this notation, trough the Kronecker algebra [12],
it is possible to decompose the probability vector and the
infinitesimal generator matrix as

π̃(t) = π(1)(t)⊗ π(2)(t)⊗ . . .⊗ π(n)(t),

Q̃ = R+W +∆,

where

R =

n⊕
i=1

R(i), W =
∑

ξ∈ST

n⊗
i=1

W (ξ,i), (4)

and R and W are |S(i)| × |S(i)| matrices that represent,
respectively, the local contribution and the synchronization
contribution (being ST the set of the synchronization transi-
tions). ∆ is the diagonal matrix defined as ∆ = −diag((R+
W )e), where e denotes the column vector with all the en-
tries equal to 1. The operators ⊕ and ⊗ are the Kronecker
sum and product, respectively. A complete characterization
can be found in [12].

Among the available formats for the implicit representa-
tion and manipulation of the above matrices and vectors,
and in particular, Q, π0 and r, the Tensor-Trains format
(also known as matrix product state) [3] is exploited in the
main methodologies supported by the tool TAPAS to nu-
merically solve the SAN reward model.

4. INPUT FORMAT
TAPAS is a library of MATLAB functions that compute

the measures of interest. As stated in Section 2, the user
has to specify the implicit representation of Q̃ through the
definition of R andW , the initial probability vector π̃(0), the
reward vector r̃ and the column vector ẽB. For the example
depicted in Figure 1, R and W are

R(1) R(2)( )( )
0 λ1 0 0 0 0
µ1 0 0 µ2 0 0
0 0 0 0 0 0

W (ξ1,1) W (ξ1,2)( )( )
0 0 0 0 0 0
0 0 δ1 0 0 1
0 0 0 0 0 0

W (ξ2,1) W (ξ2,2)( )( )
1 0 0 0 λ2 0
0 1 0 0 0 0
0 0 1 0 0 0

U E F U E F

R(3)
0 0 0 0 U

µ3 0 0 ϑ3 E
0 0 0 0 F
0 0 0 0 B

W (ξ1,3)
0 0 1 0 U

0 0 1 0 E
0 0 0 0 F
0 0 0 1 B

W (ξ2,3)
0 1 0 0 U

0 0 0 0 E
0 0 0 0 F
0 0 0 1 B
U E F B

π̃(0) is (1, 0, 0)⊗(1, 0, 0)⊗(1, 0, 0, 0), and r̃ and ẽB depend on
the measure. In [4] it has been shown that, given a reward
vector, it is always possible to rewrite it as

r̃ =
∑
i

n⊗
j=1

r̃i,j

This enhances the performance of those methods that rely
on the Tensor Trains format. Similarly, ẽB is expressible as
the sum of Kronecker products of binary column vectors.

As an example, call F the binary column vector that in-
dicates the state (F, F, F ) of Figure 1, i.e., F = (0, 0, 1)T ⊗
(0, 0, 1)T⊗(0, 0, 1, 0)T , andB the one that indicates (F, F,B),
i.e., B = (0, 0, 1)T ⊗(0, 0, 1)T ⊗(0, 0, 0, 1)T . Then, Y∞ is the
Time To Failure when the reward is defined as

r̃ = (1, 1, 1)T ⊗ (1, 1, 1)T ⊗ (1, 1, 1, 1)T − F −B,



argument description
inv linear system solver

tta variance evaluate Equation (1)
momentk evaluate Equation (2)
cond etta evaluate Equation (3)

Table 1: First argument of eval_measure.

and MTTF is M1. To evaluate πB(∞) and MTTF|B when
B = {(F,F,F)}, just define eB = F; for B = {(F,F,B)},
eB = B.

5. TUTORIAL
In this section, a few details are provided on how to setup

TAPAS, exploit auxiliary functions to define R, W , π̃(0), r̃
and ẽB, and evaluate Mk, πB(∞) and MRTA|B. The model
depicted in Figure 1 is taken as an illustrative example. A
complete tutorial can be found in examples/tutorial.m in-
side the TAPAS package.
Assuming that the TT-Toolbox has been cloned in the

same folder of TAPAS, the setup is done through the call of
the setup functions, namely:

cd TT-Toolbox/

setup

cd ../tapas/

setup

R and W are defined as MATLAB cell arrays of matrices in
Tensor Trains format, namely:

R = cell(1, n); W = cell(2, n);

W{1, 2} = tt_matrix([0,0,0; 0,0,1; 0,0,0]);

where, as an example, W (ξ1,2) of Section 4 is defined. The
ktt_ej function, that takes the array of |S(i)| and an array
of indices (each indicating the nonzero entry of the standard
basis vector), can be exploited to define π̃(0), as in

ss = [3, 3, 4]; pi0 = ktt_ej(sz, ones(1, n));

Once the result tolerance tol and the tolerance ttol ex-
ploited by round are fixed (e.g., to evaluate MTTF), r̃ can
be defined through

F = [3 3 3]; B = [3 3 4];

r = round(ktt_ones(ss) - ktt_ej(ss, F)

- ktt_ej(ss, B), ttol);

where ktt_ones is the column vector of all ones of the ap-
propriate dimension. The absorbing states are represented
by:

absorbing_states = [F; B];

The evaluation is finally obtained calling eval_measure as
follows:

m = eval_measure(’inv’, pi0, r , R, W, ’debug’,

true, ..., ’algorithm’, ’amen’, ’ttol’, ttol,

..., ’absorbing_states’, absorbing_states);

where the measure is selected, among those described in
Section 2, by specifying the first argument as in Table 1, and
the algorithms, i.e., methods, are those listed in Table 2.

Tensor trains representations can be efficiently stored only
if the TT-ranks remain bounded by small integers. How-
ever, every arithmetic operation would normally increase
the ranks, so the tensors and tensor operators are repeat-
edly truncated to a given tolerance to ensure they are kept
efficiently stored. This operation can be performed using
the TT-SVD algorithm [13], which is guaranteed to recover
a low-rank approximation that satisfies a prescribed accu-
racy, is quasi-optimal among all other approximations with
the same TT-ranks, and has linear complexity in the num-
ber of tensor indices. The parameter ttol is the relative
accuracy that is requested in these truncation stages. The
exact amount of performed truncation operations depends
on the chosen algorithms.

6. IMPLEMENTED METHODS
As stated in Section 2, at the core of TAPAS there is the

solution of linear systems. Among the methods available in
the literature, at the moment only those listed in Table 2
have been implemented 6. They are briefly described, with
emphasis on those that treat both matrices and vectors im-
plicitly through Tensor Trains algebra (the explicit methods
have been implemented only for verification purposes).

All the methods solve linear systems with the matrix Q or
Q−S, with the final purpose of evaluating expressions of the
form πT

0 (Q− S)−jr. The algorithms can be grouped in two
classes: the one solving linear systems such as (Q−S)jx = r,
and the ones computing solution to xT (Q − S)j = πT

0 . We
call the latter transposed methods. Quite often, resorting to
transposed methods can be beneficial. For instance, when
dealing with Krylov subspace methods (see gmres below)
the vectors πT

0 (Q − S)j —that form a basis for the Krylov
projections subspace— never represent unreachable states,
guaranteeing lower TT-ranks in practice and improving the
convergence behavior. When several (unreachable) absorb-
ing states are present, Q−S can be singular7; this may pose
theoretical and numerical problems for methods that do not
belong to the latter class, and therefore we resort to consider
Q−S− ϵI instead, where ϵ is of the order of the truncation
threshold ttols. This does not alter the solution more than
the truncations performed using the TT-SVD algorithm, but
guarantees better convergence properties in practice.
full-from-tt assembles explicitly Q̃, π̃(0) and r̃, and

solves the linear system through the MATLAB linsolve

function. spantree instead, starting from Q̃, first finds the
reachable states and assembles Q, π(0) and r (notice that,
trough a relabeling, the actual state-space and the potential
one are related by S ⊆ S(1)×· · ·×S(n)), and then solves the
system through linsolve. These two methods are standard
ones, and here are exploited to verify results from the other
methods when addressing small models.
dense-splitting utilizes a regular splitting [22] of the

fully assembled Q̃ decomposed as Q − S = M − N , and
then solves the system (Q − S)x = r through the standard
iterative approach of iterating xk+1 = M−1Nxk +M−1r.
This method, not published yet, should be considered as

beta version; it is of interest because the convergence is guar-

6The code of methods can be found in
tapas/methods/inv_methodname.m, where methodname
spans the first column of Table 2.
7Most often the correction S is only designed to account for
reachable absorbing states, which are easier to describe.



Method Trans Pub Exp TT ES
spantree ✓ ✓

full-from-tt ✓ ✓
dense-splitting ✓

tt-regular-splitting ✓ ✓

amen(t)
✓ ✓ ✓

✓ ✓ ✓

gmres(t)
✓

✓ ✓
tt-expsumst ✓ ✓ ✓

Table 2: Methods supported by TAPAS. Legenda:
Trans=transposed, Pub=published in the context of
Availability/Reliability models, Exp=for construct-
ing explicitly the state-space, TT=for exploiting
Tensor Trains, ES=Exponential Sums.

anteed and monotonic, i.e., the partial approximation ob-
tained by xk is always a guaranteed lower bound for the
actual measure MTTF. tt-regular-splitting is the im-
plicit version of dense-splitting, and is implemented in
two variants: one solves the linear system as it is, while
tt-regular-splittingt solves the transposed system. As
experimentally verified, in some situations, solving the sys-
tem with the transposed can be more effective in keeping the
TT-rank bounded. Indeed, the fixed point iteration consid-
ers the action of powers of M−1N on the initial vectors,
and implicitly represents only reachable states. A deeper
analysis of this phenomenon is planned in the future.
amen and dmrg rely on the AMEn [23] and DMRG [24]

solvers in the TT-Toolbox, respectively; they are well-known
solvers in the Tensor Train format. The former originates
from the physics community and the work on matrix product
states representations [24, 25], whereas the latter is a more
recent evolution, based on alternative minimization.

AMEn applied to the transposed system is also imple-
mented in ament. At the moment, a first guess for the
starting point in amen is obtained by solving first the lin-
ear system D̃x = −r̃, where D̃ is a diagonal matrix such
that

⊕n
i=1 R

(i) ≤ D̃ component-wise. The preconditioner
exploits ttexpsummldivide, an approximation of the linear
system solution based on the Exponential Sums [14]. This
method is the one adoped in [4].
tt-expsumst solves the system exploiting the Exponential

Sums and an ad hoc iteration step deduced from a (non-
regular) splitting. This method, called KAES, is an (un-
published) advancement with respect to the one presented in
[3]. At the moment is in beta version. The proof that KAES
approaches the solution monotonically is in [3].
gmres and gmrest implement the GMRES iteration ex-

ploiting the Tensor-Train arithmetic for matrix-vector oper-
ation and for compressing the orthogonal basis. Using the
exponential sums approximation of the inverse of

⊕n
i=1 R

(i) ≤
D̃ as a preconditioner, they work well when the local syn-
chronizations provide a good description of the stochastic
process, but require many iterations in other situations.

7. EXAMPLE OF ANALYSIS
Consider an extended version of the example depicted in

Figure 1 where there arem copies of A1, and then the system
model comprises n = m+2 submodels. The parameters set-

Figure 2: MTTF and MTTF|B for B = {F}, called
here CMTTF, and B = {B}, called CMTTB.

ting and other details can be found in examples/tutorial_-

large.m; the aim of this section is just to show the potential-
ities of TAPAS. The potential state-space has 4·3m+1 states;
so, working with double precision, if m = 15 then each vec-
tor requires about 1 Gb of memory, if represented explicitly.
Instead, with TAPAS it is possible to handle matrices and
vectors implicitly; so the memory occupancy depends on
the TT-ranks, that for the examples under analysis remains
quite small, even if ξ1 synchronizes all the automata. For
small n, the results of the amen method were verified with
spantree, but the analysis for n ≥ 13 was not feasible on a
PC equipped with an Intel i7-1165G7 CPU, 40 Gb of DDR4
RAM at 33MHz when selecting spantree or full-from-tt.
Figure 2 shows how MTTF and MTTF|B vary at increas-

ing of n. Notice that πB(∞) varies between 0.82 and 0.98,
thus from Figure 2 and the known relation

MTTF = πF(∞) ·MTTF|F + πB(∞) ·MTTF|B

it is possible to gain useful insights on the system behavior.

8. CONCLUSION AND FUTURE WORK
This paper presented TAPAS, a new tool for efficient eval-

uation of dependability and performability attributes of sys-
tems composed of a large number of interconnected compo-
nents. Its features and usage have been described using a
representative case study.

Useful extensions to the current implementation include
to: i) amplify the set of implemented methods, with respect
to those in Table 2; ii) exploit the tool to evaluate additional
performability measures of interest, with focus on specific
application domains; iii) fully adhere to the SAN formal-
ism, resorting to generalized Kronecker algebra theory; iv)
develop new features, e.g. to allow steady-state analysis,
so to address availability-related measures, and to import
the model description, as elaborated by other tools; v) inte-
gration of TAPAS in other tools, in addition to MATLAB,
possibly open source ones, to promote wider usability.



References
[1] B. Plateau and W. J. Stewart. 2000. Stochastic au-

tomata networks. In Computational Probability, 113–
151.

[2] B. R. Haverkort and K. S. Trivedi. 1993. Specification
techniques for Markov reward models. Discrete Event
Dyn. Syst., 3, 219–247.

[3] G. Masetti, L. Robol, S. Chiaradonna, and F. Di Gian-
domenico. 2019. Stochastic evaluation of large interde-
pendent composed models through Kronecker algebra
and exponential sums. In Application and Theory of
Petri Nets and Concurrency, 47–66.

[4] G. Masetti, S. Chiaradonna, L. Robol, and F. Di Gian-
domenico. 2021. Implicit reward structures for implicit
reliability models. Submitted to Trans. on Reliability.

[5] A. Bondavalli, M. Nelli, L. Simoncini, and G. Mon-
gardi. 2001. Hierarchical modelling of complex control
systems: dependability analysis of a railway interlock-
ing. Journal of Computer Systems Science and Engi-
neering, 16, 4, 249–261.

[6] G. Ciardo and K. S. Trivedi. 1991. A decomposition
approach for stochastic Petri net models. In The 4th

Int. Workshop on Petri Nets and Perform. Models
(PNPM 1991). Melbourne, Victoria, Australia, 74–83.

[7] P. Lollini, A. Bondavalli, and F. Di Giandomenico.
2009. A decomposition-based modeling framework for
complex systems. IEEE Trans. Reliab., 58, 1, 20–33.

[8] S. Derisavi, P. Kemper, and W. H. Sanders. 2004.
Symbolic state-space exploration and numerical anal-
ysis of state-sharing composed models. Linear Algebra
Applications, Special Issue on the Conference on the
Numerical Solution of Markov Chains, 386, 137–166.

[9] H. Sukhwani, A. Bobbio, and K. S. Trivedi. 2015. Large-
ness avoidance in availability modeling using hierarchi-
cal and fixed-point iterative techniques. International
Journal of Performability Engineering, 11, 4, 305–319.

[10] B. Plateau, J.-M. Fourneau, and K.-H. Lee. 1989. PEPS:
A package for solving complex Markov models of par-
allel systems. In Modeling Techniques and Tools for
Computer Performance Evaluation, 291–305.

[11] S. Donatelli. 1993. Superposed stochastic automata:
A class of stochastic Petri nets with parallel solution
and distributed state space. Performance Evaluation,
18, 1, 21–36.

[12] P. Buchholz and P. Kemper. 2004. Kronecker based
matrix representations for large Markov models. In
Validation of Stochastic Systems. Volume 2925, 256–
295.

[13] I. V. Oseledets. 2011. Tensor-train decomposition. SIAM
J. Sci. Comput., 33, 5, 2295–2317.

[14] D. Braess and W. Hackbusch. 2005. Approximation of
1/x by exponential sums in [1,∞). IMA J. Numer.
Anal., 25, 4, 685–697.

[15] The Mathworks, Inc. 2021. MATLAB version 9.11.0.
1769968 (R2021b). The Mathworks, Inc. Natick, Mas-
sachusetts.

[16] J. Babar, M. Beccuti, S. Donatelli, and A. Miner. 2010.
GreatSPN enhanced with decision diagram data struc-
tures. Applications and Theory of Petri Nets, 308–317.

[17] T. Courtney, D. Daly, S. Derisavi, S. Gaonkar, M.
Griffith, V. Lam, andW. H. Sanders. 2004. The Möbius
modeling environment: recent developments. In First
Int. Conf. on Quant. Eval. of Syst. (QEST 2004). En-
schede, Netherlands, 328–329.

[18] P. Buchholz. 1999. Hierarchical structuring of super-
posed GSPNs. IEEE Trans on Software Engineering,
25, 2, 166–181.

[19] K. S. Trivedi. 2002. SHARPE 2002: Symbolic hierar-
chical automated reliability and performance evalua-
tor. In 32nd Annu. IEEE/IFIP Int. Conf. on Depend-
able Syst. and Netw. (DSN 2002). Washington, DC,
USA, 544.

[20] W. H. Sanders and J. F. Meyer. 1991. A unified ap-
proach for specifying measures of performance, de-
pendability and performability. In Dependable Com-
puting for Critical Applications, Vol. 4 of Dependable
Computing and Fault-Tolerant Systems, 215–237.

[21] H. Choi and K. S. Trivedi. 1993. Conditional MTTF
and its computation in Markov reliability models. In
Annual Reliability and Maintainability Symposium 1993
Proceedings, 56–63.

[22] A. Berman and R. J. Plemmons. 1994. Nonnegative
matrices in the mathematical sciences. Classics in Ap-
plied Mathematics. Volume 9, 340.

[23] S. V. Dolgov and D. V. Savostyanov. 2014. Alternating
minimal energy methods for linear systems in higher
dimensions. SIAM J. Sci. Comput., 36, 5, A2248–A2271.

[24] S. R. White. 1992. Density matrix formulation for quan-
tum renormalization groups. Phys. Rev. Lett., 69, 19,
2863 –2866.

[25] S. R. White. 1993. Density-matrix algorithms for quan-
tum renormalization groups. Physical review b, 48, 14,
10345 –10356.


	Introduction and related work
	Context
	Modeling formalism
	Input format
	Tutorial
	Implemented methods
	Example of analysis
	Conclusion and future Work

