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ABSTRACT
The satisfaction of ever more stringent performance require-
ments is one of the main reasons for software evolution.
However, determining the primary causes of performance
degradation is generally challenging, as they may depend
on the joint combination of multiple factors (e.g., workload,
software deployment, hardware utilization). With the in-
creasing complexity of software systems, classical bottleneck
analysis seems to show limitations in capturing complex per-
formance problems. Hence, in the last decade, the detection
of performance antipatterns has gained momentum as an ef-
fective way to identify performance degradation causes. In
this tool paper we introduce PADRE (Performance Antipat-
tern Detection and REfactoring), a tool for: (i) detecting
performance antipattern in UML models, and (ii) refactor-
ing models with the aim of removing the detected antipat-
terns. PADRE has been implemented within Epsilon, which
is an open-source platform for model-driven engineering, and
it grounds on a methodology that allows performance an-
tipattern detection and refactoring within the same imple-
mentation context.

1. INTRODUCTION
The complexity and heterogeneity of software systems ma-

kes the performance requirements validation difficult to be
carried out. A performance requirement can impose a (strict)
limit on a combination of attributes by different nature. For
example, a performance requirement might affect the soft-
ware deployment and/or the largest workload affordable for
a system.

Traditionally, performance analysis has been based on
bottleneck identification and removal. However, the bottle-
neck analysis might be not enough to tackle the complexity
of modern systems. For this reason, performance antipat-
terns have recently emerged as more effective instruments
to detect and remove non-trivial performance problems. A
performance antipattern is a formalization of a bad design
practice that might induce performance degradation [24].
Furthermore, performance antipatterns can describe perfor-
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mance flaws both on models [7] and on code [23].
In this paper, we present PADRE (Performance Antipat-

tern Detection and REfactoring), a tool for the detection
and removal of performance antipatterns in UML models.
PADRE is developed on the basis of a well-assessed approach
for the formalization of performance antipattern conditions
with first-order logic [13], and on a methodology for model
refactoring aimed at removing performance antipatterns [4,
5]. It has been designed and implemented within Epsilon
[20], which is a widely adopted model-driven engineering
platform.

The novelty of PADRE is that it introduces a high degree
of automation in performance antipatterns detection and
removal while keeping the human contribution in the loop.
Therefore, one can produce modeling alternatives that might
show better performance. In perspective, it can be adopted
as a performance evaluation and improvement tool even
in production environments by connecting monitoring data
gathered from a running system to its corresponding model
elements. Those model elements could be fed with actual
performance measurements coming from profiling through
MARTE [1] stereotypes. Once a possible beneficial evolution
is identified, the corresponding refactoring could be (semi-
)automatically propagated to the implementation level [6,
15].

The rest of this paper is organized as follows: Section 2
discussed related work; Section 3 introduces PADRE goals,
requirements, architecture and inner behavior; Section 4
shows PADRE at work by means of an illustrative exam-
ple.

2. RELATED WORK
In the last decade, models have been increasingly used

since the early phases of software development down to the
evolution phase, where software evolves (usually through
refactoring steps) for many reasons, like new requirements,
changes of context, etc. In practice, the application of refac-
toring actions on models helps to identify the best refac-
toring paths before expensively applying them on the code
itself.

Most of the recent papers in this area deal with model-
based refactoring driven by functional properties [8, 18, 19,
22], whereas only few of them consider non-functional prop-



erties [14, 21, 17].
Cortellessa [11] reports on several approaches introduced

in the literature to use performance antipattern knowledge
for detecting and removing performance problems in soft-
ware models.

Xu [25] has presented a prototype named Performance
Booster. This approach can be used in the early design
phases. Performance antipatterns are detected on a Layered
Queuing Network (LQN) obtained from a software model
by means of a bi-directional transformation. Refactoring
takes place on the performance model, and the correspond-
ing refactored software model is obtained by exploiting trans-
formation bi-directionality. However, as it has been shown
in [3], performance models are more abstract than software
models, hence the portfolio of refactoring actions available
on the former is much more limited than the one on the
latter.

Recent studies [16, 14] place the antipattern detection
and removal within multi-objective optimization problems.
They show that the performance antipattern detection can
improve the quality of Pareto frontier in terms of perfor-
mance although different modelling notations (e.g., UML,
and Æmilia) were used.

At the best of our knowledge, PADRE is the first inte-
grated tool that implements, within a model-driven environ-
ment (i.e., Epsilon), an approach for antipattern detection
and removal on UML models.

3. PADRE TOOL
In this section, we describe goals, requirements, the archi-

tecture, and the underlying methodology of PADRE.

3.1 Goals
PADRE allows model refactoring driven by performance

antipatterns detection. PADRE supports UML models pro-
filed with MARTE as architectural description language, as
well as Queueing Networks (QN) and Layered Queueing Net-
works (LQN) as performance model notations. The MARTE
profile extends the UML language with performance con-
cerns. In particular, it allows setting performance input pa-
rameters as well as reporting performance analysis results
back to the UML model.

A key goal of PADRE is providing support to model refac-
toring driven by performance antipatterns detection in a sin-
gle integrated environment, which helps designers and per-
formance experts to work together. In Addition, PADRE
exploits the Epsilon platform [20] to perform model-driven
tasks.

3.2 Tool requirements
In order to allow performance antipatterns detection and

removal, PADRE works on UML models made up of three
views of the system as depicted in Figure 1:

• Static view is represented through a UML Component
Diagram. In this view, we use UML Components and
UML Operations. Furthermore, components interface
realizations and interface usages describe relationship
among UML Components.

• Deployment view is represented through a UML De-
ployment Diagram, which describes manifestation of

UML Components through UML Artifacts, UML De-
vices (i.e. platform nodes), and the deployment rela-
tionship between UML Devices and UML Artifacts.

• Dynamic view is represented through a set of UML Se-
quence Diagrams, one for each UML Use Case, where
UML Components are associated to UML Lifelines
while UML Message signatures represent UML Oper-
ation calls provided by recipient UML Lifeline.

PADRE considers only stereotypes belonging to the Ge-
neric Quantitative Analysis Modeling (GQAM) package of
MARTE, as summarized in the following, and Figure 1 de-
picts their usage:

• The GaExecHost stereotype is applied to UML Device
instances. It defines the scheduling policy (schedPol-
icy), the device speed (speedFactor), and its multiplic-
ity (resMult). In addition, the tagged value utilization
contains the utilization result of a performance analy-
sis.

• The GaStep and GaWorkloadEvent stereotypes are
applied to UML Use Cases. GaStep defines the execu-
tion probability for the Use Case (prob), the number
of repetitions (rep), whereas GaWorkloadEvent defines
the workload arrival pattern (pattern).

• The GaScenario is applied to UML Use Cases to re-
port performance analysis results. In particular, the
respT, and the throughput tagged values contain re-
sponse time and throughput values obtained by a per-
formance analysis.

• The GaAcqStep stereotype is applied to UML Mes-
sages to specify the execution probability (prob), the
number of repetitions (rep), the payload (msgSize),
and the service demand (servDemand) for the opera-
tion request.

PADRE allows the selection of two performance model no-
tations, which are Queueing Networks and Layered Queue-
ing Networks. The user decides the target notation, being
aware that PADRE uses the MVA [9] implementation pro-
vided by the JMT toolset (i.e., JMVA) [10] for solving QN
models, whereas the native provided solver for LQN models.

3.3 Tool architecture
Figure 2 illustrates the architecture of PADRE. We have

introduced the PadreValidationView, which extends the Val-
idationView of the Epsilon Validation View (see evl compo-
nent). In particular, our view allows the user to choose
from a variety of refactoring options. Each refactoring ac-
tion triggers the process that applies the action and creates a
new refactored model. The refactoring component, instead,
includes the engine and the refactoring actions. The trans-
formation component is responsible for automating model-
to-model transformations. This component converts the sys-
tem model (i.e., UML) to a performance model (e.g., LQN).
Then, the specific solver executes the performance model
and provides performance indices. All the third-party ele-
ments related to the performance model are represented in
Figure 2 by the Performance Model Resources artifact. The
ModelFactory class takes advantage of these resources to
build an internal representation of the performance model.



(a) Static View.

{respT="42.9340"

throughput="0.1160"}

{respT="37.3480"

throughput="0.0990"}

(b) Use Case. (c) Deployment View.

Figure 1: A UML-MARTE example model.



Figure 2: PADRE architecture.

The TransformationAgent exploits this internal represen-
tation to execute a model-to-model transformation. The
transformation uses the system model as input and the per-
formance model as output. Therefore, the Transformation-
Agent triggers the solver to obtain the performance esti-
mation. The separation between model creation and trans-
formation management facilitates the integration of several
performance models into PADRE.

3.4 Tool workflow
Figure 3 describes the iterative methodology underlying

PADRE.
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Figure 3: PADRE workflow.

The process starts with the execution of a UML-MARTE-
to-Performance-model transformation, which consumes the
system model and produces the corresponding performance
model (e.g., MVA, or LQN). The produced performance
model will be solved (or simulated) by the Performance

Solver. Thus, the obtained performance indices are fed
back to the system model through the Performance Analy-
sis Results Back-Annotation activity.

Once the system model has been annotated, the Perfor-
mance Antipatterns Detection activity takes place, followed
by user-driven Antipattern-Based Model Refactoring activ-
ity. Such activities represent key features of the PADRE
methodology in proving refactoring solutions to meet the
performance requirements.

The Performance Antipattern Detection and the subse-
quent Antipattern-Based Model Refactoring activities have
been implemented in EVL and EOL modules. In particu-
lar, the detection module implements antipattern rules as
EVL constraints that will be verified on the system model,
as depicted in Figure 4a. Currently, PADRE can detect
seven performance antipatterns described in [12]. In detail,
we implemented the first order logic of each performance
antipattern as an EVL constraint (see the check block in
Figure 4a), and we associated, to each antipattern, possible
refactoring actions that have shown the ability to remove
it (see a fix block in Figure 4a).1 The refactoring module
is made up of EOL functions that are able to change the
system model (see the operation invoked in the do block in
Figure 4a).

PADRE provides a unifying working environment, by ex-
ploiting the Epsilon platform, that allows performance anal-
ysis interpretation and feedback generation. The feedback
generation is one of the major contribution of PADRE. In
particular, PADRE generates performance feedback through
checking properties on the system model. On the basis
of this feedback, PADRE enables a user-driven selection
of refactoring actions. The refactoring actions are aimed
at satisfying performance properties, such as performance
requirements. PADRE performance antipattern portfolio,
which is made up of detection rules and refactoring actions,
is described through an EVL module.

The refactoring actions available in the current portfolio
have been designed to obtain refactored models that can
still be solved. Although we have not formally proven this
aspect, our experimental testing has not found a counterex-
ample up to now. The process ends either arbitrarily by
stopping the workflow execution, or once the performance
requirements are met.

3.5 Target and application
PADRE has been designed and implemented to be em-

ployed in real scenarios and for research scopes. In the con-
text of a real scenario, performance antipattern detection
and removal should help designers and performance experts
to identify system architecture alternatives that show bet-
ter performance than the initial architecture. Furthermore,
the benefits of using PADRE in a real scenario are twofold:
reducing the number of manually generated architecture al-
ternatives, obtaining architecture alternatives that should
not be affected by bad design practices that might lead to
future performance degradation.

Regarding the context of research activities, PADRE opens
a new window on the performance antipattern detection and
removal research area. In particular, it allows one to explore
different refactoring actions, which might discover even bet-
ter architecture alternatives. On the other hand, PADRE

1PADRE - https://github.com/SEALABQualityGroup/
padre/tree/tosme-tool-demo.

https://github.com/SEALABQualityGroup/padre/tree/tosme-tool-demo
https://github.com/SEALABQualityGroup/padre/tree/tosme-tool-demo


(a) Excerpt of a rule for the Pipe and Filter
antipattern. (b) Example of PADRE refactoring session.

Figure 4: Performance antipatterns detection and model refactoring with PADRE

has been designed to be extensible as much as possible, and
it can be applied to different modelling notation on which
few research studies have been conducted until now.

The ability of PADRE in the context of performance anal-
ysis has been shown within the European Project Mega-
mart2 in which practitioners and researchers worked to-
gether in the context of megamodelling [2].

4. ILLUSTRATIVE EXAMPLE
In this section, we show PADRE at work by means of a

running example.
Figure 4 (a) shows an excerpt of Pipe and Filter (PaF)

performance antipattern definition [13], i.e., the detection
rule and some of the available refactoring action(s). A per-
formance antipattern definition is an EVL critique that ap-
plies to a certain context (i.e. a UML metaclass) and that
contains an antipattern detection rule (namely checks), a
message to return when the antipattern is detected and a
set of imperative blocks (namely fixes), each codifying a
possible model refactoring.

For example, the PaF detection rule is applied to UML
Operations, and it consists of four EVL operations returning
a boolean (namely PaF F probExec(), PaF F resDemand(),
PaF F throughtput(), and PaF F maxHwUtil()), each rep-
resenting a predicate of a first-order logic formula in con-
junctive normal form.

The do block of a fix contains a call to an ad-hoc EVL
operation (see moveToNewComponentOnNewDevice and mo-

veToNewComponentOnLessUsedNearDevice of Figure 4 (a)),
which codifies a possible model refactoring that might lead
to the removal of the PaF occurrence and, hopefully, to a
performance improvement.

The kind of support currently provided by PADRE is
named User-driven multiple refactoring [4], and it strictly
depends on the execution semantics of the EVL language
[20]. In particular, it consists of interactive antipattern de-
tection and refactoring sessions, where antipattern occur-
rences (i.e., critiques) are firstly detected on the software
model, and a number of available refactorings (i.e., fixes)
are then selected by the user. Each selection immediately
triggers the application of the refactoring on a temporary
version of the model. When the user stops the refactor-
ing session, the temporary software model is finalized. Note
that such “freezing” of the refactoring session, which is na-
tive for the EVL execution engine, is not suitable in our
context, because new performance indices are needed for

a new antipattern detection. Moreover, if a new element
is created by a refactoring action, then the latter cannot
be referred in subsequent refactoring. For this reason, Pa-
dreValidationView (see Figure 2) overrides such native EVL
engine behavior by updating each temporary refactored ver-
sion of the model with performance indices obtained from
the performance analysis.

Figure 4 (b) shows a snapshot of PadreValidationView
right after a performance antipatterns detection: all the de-
tected occurrences are listed in the validation view and,
for each occurrence, both the context metaclass and the
metaclass instance representing the antipattern source are
listed. By right-clicking a list item, PADRE proposes avail-
able refactoring actions aimed at removing such antipattern
occurrence, and the user can arbitrarily apply one of them.
For example, among the 11 occurrences (i.e., 3 Blobs, 6
CPSs and 2 PaFs) [13] reported in Figure 4 (b), four refac-
toring actions are applicable to the PaF having the login
Operation as source: the first two, namely Move it to a
new Component deployed to a new Node and Move it to a
new Component deployed to the less used neighbour Node,
correspond to the fixes of Figure 4 (a) and, in particular,
to moveToNewComponentOnNewDevice and moveToNewCompo-

nentOnLessUsedNearDevice EVL operations, respectively.
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