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Tutorial Objectives

 To provide an overview and state of the art of 
analytic methods for reliability/availability 
assessment of hardware-software systems

 To provide real-life examples that show the 
use of these methods in practice

 To provide current challenges faced in such 
assessment projects

 Ref: Trivedi & Bobbio, Reliability and Availability: 
Modeling, Analysis, Applications, Cambridge University Press, 2017
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Administrative matters

 Students may get a certificate for participation
 Fill in a google form    

https://docs.google.com/forms/d/e/1FAIpQLSd5kIKll9jl8Ikq
Hic3KwIBZhbdbk8qoD9W7BYNAkS9meLL2g/viewform?usp=
sf_link

 Meet The Star event for PhD Students & Postdocs    
https://www.performance2021.deib.polimi.it/meet-the-star-
event/
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Tutorial Outline

 Motivation and Introduction
 Reliability and Availability Assessment
 Methods in Use
 Illustrated through several real-world examples 

of hardware, software and combined hardware-
software systems

 Concluding remarks
 References
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Health & Medicine

Communication

Avionics

Entertainment Banking

Our Dependence on Technical Systems 
These systems need to be highly reliable
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Need for a new term

 Reliability is often used in a generic sense as an 
umbrella term.

 Reliability is also used as a precisely defined 
mathematical function.

 To remove the confusion, IFIP WG 10.4  
proposed Dependability as an umbrella term 
and Reliability is to be used as a well-defined 
mathematical function.
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Dependability– An umbrella term

 Trustworthiness of a system such that reliance can justifiably be 
placed on the service it delivers

Dependability

Attributes
Availability
Reliability
Safety
Maintainability

Fault Prevention
Fault Removal
Fault Tolerance
Fault Forecasting

Means

Threats
Faults
Errors
Failures
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Difference between reliability and 
availability

8

 reliability refers to failure-free system 
operation during an entire interval

 availability refers to failure-free system 
operation at a given instant of time

 Possible to combine the two under the notion 
of interval reliability



Faults, Errors, Failures

 Failure occurs when the delivered service no longer 
complies with the desired service

 Error is that part of the system state which is liable 
to lead to subsequent failure

 Fault is adjudged or hypothesized cause of an error

Faults are the cause of errors that may lead to failures
Fault Error Failure
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A Classification of Faults

 Physical vs. Design vs. Interaction
 Network: Node vs. Link
 Hardware vs. Software vs. Human
 Hardware: Permanent, Intermittent, Transient
 Software: Bohrbugs, Mandelbugs, Aging-related bugs
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Failure Classification

 Omission failures
 Crash failures
 Infinite loop

 Response  or Value failures
 Timing failures

 Late (aka performance failure or dynamic failures)
 Safe vs. Unsafe failure
 Security failures: Breach of confidentiality or breach of integrity 

or loss of use
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Basic Definitions
 One shot Reliability R: 

When is this applicable?

 (time-dependent) Reliability R(t) :
X : Time to failure of a system (TTF), or lifetime random 
variable
F(t): cumulative distribution function of system lifetime

F(t) = P( X ≤ t )

Reliability is the probability that the system has not failed 
until time t; i.e., complementary distribution function of TTF

( ) ( ) ( )tFtXPtR −=>= 1
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Basic Definitions

 Mean Time To system Failure:

Let f(t): prob. density function of system lifetime (TTF)

[ ] ( ) ( )∫∫
∞∞

===
00

dttRdtttfXEMTTF

Make a clear distinction between TTF, R(t) and MTTF
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Basic Definitions: Reliability

1

0

R(t)

ta b

R(0) = 1 
lim R(t) = 0
t∞

R(t) = non-increasing

R(a)
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Basic Definitions: Reliability

1-q

0

R(t)

ta b

R(0) = 1-q 
lim R(t) = 0
t∞

R(t) = non-increasing

R(a)
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q is the prob. that item
is defective to begin with

F(t)=1-(1-q)e-λt



Mass at Origin

 Described in the previous slide is useful
 Dead on arrival (Lemon)
 Can be used in non-state space models if the tool 

allows such distributions with mass at origin to 
be specified – our tool SHARPE does allow this

 In Phased Mission Models (PMS)
 Can be easily incorporated in Markov models by 

properly assigning initial state probabilities
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Basic Definitions

 Availability

Operating and providing
required functions

Failed and
being 
restored

1

0

Operating and providing
required functions

System Failure and Restoration Process
I(t) is the indicator function

I(t)
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Basic Definitions

 Instantaneous Availability A(t):

 From the figure in the last slide, the availability at time t
becomes:

 This is sometimes called point-wise availability,
instantaneous availability, or transient availability. A(t)
can be asked for at any point t in time

 Can unify R(t ) and A(t ) as Interval Reliability

A(t) = P (system working at t)

A(t)=P(I(t)=1)
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Basic Definitions 

 Interval reliability measure introduced by Barlow and Hunter 
in 1961, combines availability A(t) and reliability R(τ) :
 Available when needed (at time t) & as long as needed (for τ time units)

 Interval reliability and related concepts further developed in:
 Wang & Trivedi,  Modeling User-Perceived Service Reliability based 

User-Behavior Graphs, IJRQS, 2011

 Trivedi & Bobbio, Reliability and Availability: Modeling, Analysis, 
Applications, Cambridge University Press, 2017

 Trivedi, Wang & Hunt, Computing the number of calls dropped due to 
failures, ISSRE, 2010

 Mondal, Yin, Muppala,  Alonso, Trivedi, Defects per Million Computation 
in Service-Oriented Environments, IEEE Trans. on Services Comp., 2015
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Basic Definitions
Limiting or Steady-state availability (Ass) or just availability 
Long-term probability that the system is available (limit of 
A(t) as t → ∞):

MTTF is the system mean time to failure
MTTR is the system mean time to recovery

TTR may consist of many phases
For a non-fault-tolerant system,  the formula holds 
without any  distributional assumptions

MTTRMTTF
MTTF

+
=

ssA
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Basic Definitions

Steady-state availability (Ass) expression also applies to a 
fault-tolerant system:

MTTF is the “equivalent” system mean time to failure, 
a complex combination of component MTTFs
MTTR is  “equivalent” system mean time to recovery

Ref: Example 8.11 in: Trivedi, Probability and Statistics with Reliability, Queuing, and 
Computer Science Applications. John Wiley, 2nd edition, 2001
Ref: Lanus, Yin,Trivedi: Hierarchical composition and aggregation of state-based availability 
and performability models. IEEE Trans. Reliab. 2003
Ref: Section 9.5 in: Trivedi and Bobbio, Reliability and Availability Engineering, Cambridge 
University Press, 2017

MTTRMTTF
MTTF

+
=ssA
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Basic Definitions

 Downtime in minutes per year
 In industry, steady-state (un)availability is usually 

presented in terms of annual (steady-state) downtime.

 Downtime = 8760×60 ×(1- Ass) minutes.  

 It is also common to define the availability in terms of 
number of nines

5 NINES (Ass = 0.99999)  5.26 minutes annual downtime
4 NINES (Ass = 0.9999)  52.56 minutes annual downtime
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Number of Nines– Reality Check

 49% of Fortune 500 companies experience 
at least 1.6 hours of downtime per week

 Approx. 80 hours/year=4800 minutes/year

 Ass=(8760-80)/8760=0.9908

 That is, between 2 NINES and 3 NINES!
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Example Failures from High Tech companies

Mar. 2015 , Gmail was down for 4 hours and 40 min.

Mar. 2015, Down for 3 hours affecting Europe and US

Sept. 2015, AWS DynamoDB down for 4 hours impacting 
among others Netflix, AirBnB, Tinder

Dec. 2015, Microsoft Office 365 and Azure down for 2 
hours

Mar. 2015, Apple ITunes, App Stores long 0utage: 12 hours
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More examples of real failures

Feb. 2017  Amazon S3 service outage (almost 6 hours) 

Jul. 2017 - Google Cloud Storage service outage (3 
hours and 14 min.)  - API low-level software defect

Jul. 2017 - Microsoft Azure service outage (4 hours) –
Load Balancer Software bug

26



More Recent Examples

 In Commercial aircrafts (Boeing 737 Max 
software problem)
 Ethiopian Airlines Flight, March 2019,         

149 people died
 Lion Air Flight crash, Oct. 2018, 

189 people died
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Failures & Downtime Lead to

 Loss of Reputation
 Loss of Revenue
 Possible Loss of Life
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 That reduce system failures and reduce downtime 
due to these failures (contributed by hardware, 
software and humans)

 For System Reliability/Availability assessment and 
bottleneck detection to help decide the most cost-
effective path to improvement of reliability/availability

Need Methods
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Methods to Improve Dependability 
 Fault Avoidance
 Employ highly reliable components

 Fault Removal
 Careful Testing to remove faults

 Fault Tolerance
 Utilize Redundancy

 Fault/Failure Forecasting
 Identify bottlenecks (at design time)
 Predict when failures may occur and thence use for 

preventive maintenance (at operational time)
30



Methods Overview (Redundancy)

 Redundancy

 Coding

 Time 

 Use of Multiple Redundant Components, i.e., more 

components than required for the performance needs

31



Coding Redundancy

Coding

Hamming

CRC

Reed-Muller
Reed-Solomon
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Time Redundancy

Time

Retry operation

Restart process

Checkpoint/
restart program

Retransmit message
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If at first you don’t succeed, try and try again



Some Notes

 Time redundancy is time-honored method to 
tolerate hardware transient faults

 It is now recognized that time redundancy (retry, 
restart, reboot) can also be used to recover from 
software failures – more on this later
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Multiple Redundant Components 

Multiple 
components

Parallel
(1 of n) (static)

Stat. Identical

Non-identical

k of n  (static)

Stat. Identical

Non-identical

Standby 
(dynamic)

Cold

Warm

Hot
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Some More Notes
 In hardware redundancy, statistically identical 

components are commonly (though not always) used
 In software, it was thought in 1970’s that identical 

redundant copies of software will not be useful for 
fault tolerance

 So, classical techniques for Software Fault Tolerance 
evolved on the idea of design diversity
 Recovery block
 N-version programming

 It is now recognized that failover to identical 
software copy does help in recovering after software 
failures – more on this later
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Maintenance

Maintenance

Reactive/ 
unscheduled

Staged
Detection
Location

Recovery/repair

Escalated
Restart
Reboot
Repair

Proactive/
Preventive/
scheduled

Time based

Condition 
based

37

Preventive maintenance only useful if there is aging



Some More Notes

 Conventional wisdom is that unlike hardware, 
software does not age, so preventive maintenance 
does not help in software 

 However, since 1995 it has been recognized that 
software does age and software rejuvenation 
(preventive maintenance) 
does help improve 
software reliability/availability
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 That reduce system failures and reduce downtime 
due to these failures (contributed by hardware, 
software and humans)

 For System Reliability/Availability assessment and 
bottleneck detection

Need Methods
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Quantitative Assessment methods 
for system reliability and availability

 Black-box or Data-driven
(measurement data + statistical inference):

 The system is treated as a monolithic whole, without 
explicitly taking its internal structure into account 

 Very expensive especially for ultra-reliable systems
 ALT can help reduce the cost

 Generally applicable to small systems that are not very 
highly reliable

 Not feasible for system under design/development
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Quantitative Assessment approaches
 White-box (or Model-driven):
 When no data is available for the system as a whole
 Stochastic Model (e.g., RBD, Ftree, Markov chain) 

constructed based on the known  internal structure of 
system – its components, their characteristics and 
interactions between components

 Derive the behavior of ensembles (combinations of 
components to form a system) from first principles of 
probability theory

 Used to analyze a system with many interacting and 
interdependent components

 Need input parameters for components and subsystems
41



Quantitative Assessment approaches

 Combined approach
 Use black-box approach at subsystem/component 

level
 Use white-box approach at the system level
 Thus, a combined Data + Model driven approach
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Two Types of Uncertainty

 Aleatory (irreducible)
 Randomness of event occurrences in the real system 

captured by various distributions in the Probability 
Model (e.g., RBD, Fault tree, Markov chain)

 Epistemic (reducible) 
 Introduced due to finite sample size in estimating 

parameters to be input to the Probability Model
 Propagating epistemic uncertainty through a stochastic 

Model is a topic that will not be covered in this tutorial –
can be a subject of another tutorial!
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Outline

 Introduction and Motivation
 Reliability and Availability Models
 Conclusions
 References
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Overview of Assessment Methods

Numerical solution via a tool

Closed-form
solution

Model-driven

Discrete-event simulation

Hybrid

Analytic methods
Numerical solution
of analytic models
not as well utilized;
unnecessarily excessive
use of simulation

Quantitative  Assessment

Data-driven Error/Failure/Recovery data analytics
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Analytic Methods Taxonomy

Hierarchical composition

Fixed point iterative methods

Analytic methods

Non-state-space methods

State-space methods

Model-driven

Discrete-event simulation

Hybrid

Analytic Methods

Quantitative 
Assessment

Data-driven

46



Non-State-Space Methods : taxonomy

Non-state space methods

SP reliability block diagrams (RBD)

Fault trees

Fault trees with repeated events

Non-SP reliability block diagrams (relgraph)

Extensions such as multi-state components/systems, phased-mission systems etc.
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Cisco & Juniper Routers

RBD of Cisco 12000 GSR

RBD of Juniper M20 
K. Trivedi, “Availability Analysis of  Cisco GSR 12000 and Juniper M20/M40” 
Cisco Internal report, 2000.
Red colored block means a sub-model.

48



Modeling High Availability Systems: Sun 
Microsystems 

Top level RBD consists of all the subsystems joined by 
series, parallel and k/n blocks.
Red color means a sub-model.

Trivedi et al., Modeling High Availability Systems, 
PRDC’06 Conference, Dec. 2006, Riverside, CA

Sun Microsystems
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Series-Parallel RBDs 

 System reliability (availability) formulas :
 Assuming statistical Independence of failures (and repairs)
 Reliabilities (availabilities) multiply for blocks in series

 Un-reliabilities (un-availabilities) multiply 
for blocks in parallel

 Blocks in k-out-of-n have a simple formula
 Identical case     Rk|n= ∑𝑗𝑗=𝑘𝑘

𝑛𝑛 𝑛𝑛
𝑗𝑗 𝑅𝑅𝑗𝑗(1 − 𝑅𝑅)𝑛𝑛−𝑗𝑗
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Problem 4.22 in Greenbook

Copyright © 2021 by K.S. Trivedi 51
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Series-Parallel RBDs 

 System reliability (availability) formulas :
 Assuming statistical Independence of failures (and repairs)
 Reliabilities (availabilities) multiply for blocks in series

 Un-reliabilities (un-availabilities) multiply 
for blocks in parallel

 Blocks in k-out-of-n have a simple formula
 Identical case     Rk|n= ∑𝑗𝑗=𝑘𝑘

𝑛𝑛 𝑛𝑛
𝑗𝑗 𝑅𝑅𝑗𝑗(1 − 𝑅𝑅)𝑛𝑛−𝑗𝑗

 Non-identical case









>=

=

⋅+⋅−= −−−

ijR
R

RRRRR

ij

n

nknnknnk

 when ,0
1

)1(

|

|0

1|11||

52

∏
=

=
n

i
is RR

1



Fault Trees
 Fault Tree is a pessimist’s paradigm as opposed to RBD that can be 

considered optimists’ paradigm
 Components are represented as leaves or terminal nodes

 Internal nodes are logic gates and Root node indicates system 
failure

 Components or subsystems in series are connected  with OR gates

 Components or subsystems in parallel are connected  with AND 
gates

 Failure of a component or subsystem causes the corresponding 
input to the gate to become TRUE

 Whenever the output of the topmost gate (root node) is TRUE, the 
system is considered failed
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Fault Tree Model of GE Truck- AC6000

TOPS = Suspension
BR = Brake Rigging
L = Liner
O = Others

S OLBR
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Fault Tree Model of GE Equipment 
Ventilation System

Fault Tree with Repeated events; inverted triangle indicates such events
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Software Package SHARPE

 SHARPE: Symbolic-Hierarchical Automated Reliability and 
Performance Evaluator

 Stochastic Modeling tool  installed at over 1000 Sites; 
companies and universities

 Ported to most architectures and operating systems
 Used for Education, Research, Engineering Practice
 Users: Boeing, 3Com, EMC,  AT & T, Alcatel-Lucent, IBM, 

NEC, Motorola, Siemens, GE, HP, Raytheon, Honda,…
 http://sharpe.pratt.duke.edu/
 It is the core of Boeing’s internal tool called IRAP

A Fool with a Tool is still a fool
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Fault trees   

 Major characteristics:
 Fault trees without repeated events can be solved in polynomial 

time 
 Fault trees with repeated events -Theoretical complexity: 

exponential in number of components

 Use Factoring (conditioning)

 Find all minimal cut-sets & then use Sum of Disjoint products (SDP) to 
compute reliability

 Use BDD (Binary Decision Diagram) approach

 In practice, can solve fault trees with thousands of components
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Solution time for Very Large Fault trees 
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Such large models can be solved because of independence assumption – non-states-space models



Fault Trees  (Continued)

 Extensions to Fault-trees include a variety of different gate 

types: NOT, EXOR,  Priority AND, cold spare gate, 

functional dependency gate, sequence enforcing gate, etc. 

Some of these are “static” while others are “dynamic” 

gates
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Reliability Graph (relgraph)

 Consists of a set of nodes and edges

 Edges represent components that can fail

 Source and target (sink or terminal) nodes

 System fails when no path from source to terminal

 A non-series-parallel RBD 

 S-t connectedness or network reliability problem
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Relgraphs

 Solution methods for Relgraph
 Find all minpaths followed by SDP (Sum of Disjoint 

Products)
 BDD (Binary Decision Diagrams)-based method 
 Factoring or conditioning
 Monte Carlo method

 The first two methods have been implemented in 
our SHARPE software package
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Problem 5.8 in Greenbook

Copyright © 2021 by K.S. Trivedi 63

Water distribution network; s=1 and t=2



SHARPE Input file for Problem 5.8 in 
Greenbook

* PROBLEM 5.8
relgraph graph58
s 3 prob(0.1)
3 4 prob(0.1)
3 5 prob(0.1)
4 6 prob(0.1)
4 7 prob(0.1)
5 6 prob(0.1)
5 8 prob(0.1)
6 9 prob(0.1)
7 9 prob(0.1)
8 9 prob(0.1)
9 t prob(0.1)
end

echo list of minpaths
minpaths(graph58)
echo (s-t)-Reliability of  Problem 5.8
expr 1-sysprob(graph58)

end
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SHARPE Output  for Problem 5.8 in 
Greenbook

Copyright © 2021 by K.S. Trivedi 65

list of minpaths

Minpaths for system graph58:

{s->3, 3->5, 5->8, 8->9, 9->t}
{s->3, 3->5, 5->6, 6->9, 9->t}
{s->3, 3->4, 4->7, 7->9, 9->t}
{s->3, 3->4, 4->6, 6->9, 9->t}

(s-t)-Reliability of  Problem 5.8
1-sysprob(graph58):   7.940549e-001

-------------------------------------------



Avionics

 Reliability analysis of each major subsystem 
of a commercial airplane needs to be carried 
out and presented to Federal Aviation 
Administration (FAA) for certification 

Real world example from Boeing Commercial Airplane Company
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Reliability Analysis of Boeing 787

 Most of the subsystems are improved or modified 
versions of subsystems used in earlier planes
 Models are also modified version of the earlier 

models
 Occasionally there is an entirely new subsystem

 Model needs to be done from scratch
 Current Return Network in Boeing 787 is one such 

example
 Several of my former students are in the Boeing 

Commercial Airplane Reliability Engineering group
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Reliability Analysis of Boeing 787

A2

A4

A5

A1

A11

A13

A14

A7

A8

A9

A6

A10

A3
B3

B4

B6

B1

B13

B14

B15

B8

B9

B10

B7

B11

B2

B12

A12

B5

B16

C1

C3

C4

C5

C2

C6

D3

D5

D7

D1

D16

D17

D19

D9

D12

D13

D8

D14

D2

D15

D4

D18

D6

D10

D20

D11
E6

E7

E8

E5

E1

E2

E3

E4

E10

E11

E12

E9

E14

E13

target

F1

F8

F3

F2
F4

F5

F6

F9

F7

F10

source

 Current Return Network Modeled as a Reliability Graph 

69



Reliability Analysis of Boeing 787 (cont’d)

 Solution methods implemented in our SHARPE 
software package for relgraph
 Find all minpaths followed by SDP (Sum of Disjoint 

Products)
 BDD (Binary Decision Diagrams)-based method 

 Boeing tried to use SHARPE for this problem but 
…
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Reliability Analysis of Boeing 787 (cont’d)

A2

A4

A5

A1

A11

A13

A14

A7

A8

A9

A6

A10

A3
B3

B4

B6

B1

B13

B14

B15

B8

B9

B10

B7

B11

B2

B12

A12

B5

B16

C1

C3

C4

C5

C2

C6

D3

D5

D7

D1

D16

D17

D19

D9

D12

D13

D8

D14

D2

D15

D4

D18

D6

D10

D20

D11
E6

E7

E8

E5

E1

E2

E3

E4

E10

E11

E12

E9

E14

E13

target

F1

F8

F3

F2
F4

F5

F6

F9

F7

F10

source

 Too many minpaths

 Idea: Compute bounds  instead of exact reliability
 Lower bound by taking a subset of minpaths
 Upper bound by taking a subset of mincuts
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Reliability Analysis of Boeing 787 (cont’d)

 Our Approach : Developed a new efficient algorithm for 
(un)reliability bounds computation  and incorporated in SHARPE

• 2011 patent for the algorithm jointly with Boeing/Duke 
• “Fast computation of bounds for two-terminal network reliability”, 

EJOR 2014
• Satisfying FAA that SHARPE development used DO-178 B software 

standard was the hardest part
• As per A.V. Ramesh (Boeing), this algorithm (and SHARPE) are always 

used for modeling CRN subsystem in other Boeing commercial aircraft 
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RBD->Relgraph->ftree

 Series-parallel RBD and Fault trees without 
repeated event are equivalent

 Relgraph is more powerful than RBD since non-
series-parallel behavior can be accommodated

 Fault trees with repeated event are more powerful 
than relgraphs

 Most scalable method is the bounding algorithm 
for relgraphs; this needs to be extended to fault 
trees 
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Power-hierarchy of modeling formalisms

State space

Non-State space
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Non-state-space Methods (cont’d)
 Non-state-space methods are easy to use and have relatively fast

algorithms for system reliability, system availability, system MTTF & to
find bottlenecks assuming stochastic independence between system
components
 Series-parallel composition algorithm
 Factoring (conditioning) algorithms
 All minpaths followed by Sum of Disjoint Products (SDP) algorithm
 Binary Decision Diagrams (BDD) based algorithms
 Bounding algorithm for relgraphs

 All of the above implemented in SHARPE

 Failure/Repair Dependencies are often present; RBDs, relgraphs,
FTREEs cannot easily handle these (e.g., shared repair, warm/cold
spares, imperfect coverage, non-zero switching time, travel time of
repair person, reliability with repair).
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State-space methods : Markov chains
 To model complex interactions between components, need to 

use paradigms like Markov chains or more generally state space 
models.

 Many examples of dependencies among system components 
have been observed in practice and captured by continuous-
time Markov chains (CTMCs).

 Extension to Markov reward models makes computation of 
measures of interest relatively easy.
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Analytic Methods Taxonomy

Analytic methods

Non-state-space methods

State-space methods
e.g., Cont. time Markov chain (CTMC)
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Markov availability model of the cooling 
subsystem (IBM BladeCenter)

78

UP U1 RP

DN

DW
2λc

λc

αsp

µc

λc

µ2c

αsp

On-line repair, travel time of repair person explicitly modeled



Markov availability model of the power 
domain subsystem (IBM BladeCenter)
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UP U1

DN

RP DW
2cps⋅λps αsp

µps

λps

µ2ps

2(1-cps)⋅λps
αsp

λps

Imperfect coverage (or common mode failure), 
travel time of repair person



Markov model of Linux OS on IBM BladeCenter

UP DN DWλOS

µOS

RP
αsp

bOSβOS

(1-bOS)βOS
DT

δOS

Detection delay,  imperfect coverage, two-levels of 
recovery modeled
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Steady State Solution

Copyright © 2021 by K.S. Trivedi 81

Interpret the above expression as MTTF/(MTTF+MTTR)



Availability Model of a Replication Domain with two Appservers

 Failure detection
 By WLM
 By Node Agent
 Manual detection

 Recovery
 WLM

 Failover
 Node Agent

 Auto process restart
 Manual recovery

 Process restart
 Node reboot
 Repair

2UUO

1D UA UR UB

UC US UTUN

2γ

(1-r)ρm

rρmqρa

eδ2

dδ1

(1-c)φ

cφ (1-q)ρa

(1-r)ρm

rρm

qρa

(1-q)ρaδm

bβm

FS

FN2D 1D2D

eδ2

(1-e)δ2

δ1

cφ

(1-c)φ eδ2 (1-e)δ2

RE
(1-b)βm

µ

bβm

RP
(1-b)βm

µ

1D2NMD
δ1

cφ

(1-c)φ

1N

2N

eδ2
(1-d)δ1

(1-e)δ2

(1-d)δ1

dδ1

(1-e)δ2

(WebSphere) Application server (with escalated levels of recovery)

Delay and imperfect coverage in each step of detection/recovery  modeled



Effect of Redundancy on Reliability

 Consider a single component with
 Reliability:
 MTTF = 1/λ

 A reliability model will have one or more absorbing states
 An availability model will have no absorbing states

 Using two redundant components
 Reliability: 𝑅𝑅 𝑡𝑡 = 2𝑒𝑒−λ𝑡𝑡 - 𝑒𝑒−2λ𝑡𝑡

 MTTF = 1.5/λ

90

tetR λ−=)(

λ2 λ

2 1 0

1 0

λ
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 Assume that the initial state of the Markov chain is 2,
that is, π2(0) = 1, πk (0) = 0 for k = 0, 1.

 Then the system of differential Equations is written
based on:

Rate of buildup = Rate of flow in - Rate of flow out
for each state

Effect of Redundancy and Repair on Reliability
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A Practical Example

 It was observed that the MTTF of a single disk is 6 
years

 So, redundancy alone (with one hot spare) will 
yield an MTTF of 9 years

 Mean disk repair time is 5 hours
 Redundancy with repair will yield an MTTF of 

31,545 years!
 Estimated value based on data was found to be 

1,300 years
 How do we explain?
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Markov Model With Imperfect Coverage 
(Contd.)

c
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 After solving the differential equations, we obtain:
R(t)=π2(t) + π1(t)

 From R(t), we can system MTTF:

 It should be clear that the system MTTF and system 

reliability are critically dependent on the coverage factor

)]1([2
)21(

c
cMTTF

−+
++

=
µλλ

µλ

Markov Reliability Model With Imperfect Coverage 



A Practical Example
 It was observed that the MTTF of a single disk is 6 

years
 So, redundancy alone (with one hot spare) will 

yield an MTTF of 9 years
 Mean disk repair time is 5 hours
 Redundancy with repair will yield an MTTF of 

31,545 years!
 Estimated value based on data was found to be 

1,300 years
 The equation in the last slide explains if we use 

c=0.9978
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CTMC with Infinitesimal Generator matrix Q
 Efficient/Scalable algorithms are known & are 

implemented in software packages SHARPE, SPNP for:
 Steady-state behavior:

 Transient behavior:

 Cumulative Transient behavior:

 Derivatives of the probabilities with respect to 
parameters – parametric sensitivity functions computed
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L(t): integrals of state probability vector



State-Space methods taxonomy

Can relax the assumption of exponential distributions 

(discrete) State space 
models

Markovian models

non-Markovian models

discrete-time Markov chains (DTMC)

continuous-time Markov chains (CTMC)

Markov reward models (MRM)

Semi-Markov process (SMP)

Markov regenerative process

Non-Homogeneous Markov

Phase-Type Expansion
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Should I Use Markov (CTMC) Models? 

+ Model Fault-Tolerance and Recovery/Repair 

+ Model Dependencies 

+ Model Contention for Resources and concurrency (performance)

+ Generalize to Markov Reward Models for Degradable systems

+ Can relax exponential assumption – SMP, MRGP, NHCTMC, PH

+ Performance, Availability, Performability, Survivability, 
Resilience Modeling Possible

- Large State Space
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Markov Models
 Modeling inter-dependence among components 

 Simple model types such as RBD, Ftree, etc. do not suffice –
need to use Markov and other state space model types

 State space explosion problem
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Problems with Markov (or State Space) 
Models and their solutions
 State space explosion or the model 

largeness problem or scalability problem
 Stochastic Petri nets and related formalisms 

(stochastic process algebras) for ease of 
specification and automated 
generation/solution of underlying Markov 
model ---

 This is called Largeness Tolerance
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Scalable Model for IaaS Cloud 
Availability and Downtime

Ref: Ghosh, Longo, Frattini, Russo, Trivedi,
“Scalable Analytics for IaaS Cloud Availability,” 

IEEE Trans. Cloud Comput., 2014
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Three Pools of Physical Machines (PMs)
To reduce power usage costs, physical  machines 
are divided into three pools [IBM Research 
Cloud]

Hot pool (high performance & high power usage) 
Warm pool (medium performance & power usage)
Cold pool (lowest performance & power usage)

Similar grouping of PMs is recommended by Intel* 

*Source: http://www.intel.com/content/dam/www/public/us/en/documents/guides/
lenovo-think-server-smart-grid-technology-cloud-builders-guide.pdf
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System Operation Details 

For Availability model: 
 PMs may fail and get repaired
A minimum number of operational hot PMs are 

required for the system to function
 PMs in other pools may be temporarily assigned to the 

hot pool  to maintain system operation (migration)
Upon repair, PMs migrate back to their original pool
Migration creates dependence among availability 

models of the three pools
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Analytic model 
 Markov model (CTMC) is too large to construct by hand.
 We use a high-level formalism of stochastic Petri net (the 

flavor known as stochastic reward net (SRN))
 SRN models can be automatically converted into underlying 

Markov (reward) model and solved for the measures of 
interest such as DT (downtime), steady-state (instantaneous, 
interval) availability, reliability, derivatives of these measures 
--- all numerically by forming and solving underlying 
equations

 Analytic-numeric solution as opposed to discrete-event 
simulation

 Ref: Ciardo, Blakemore, Chimento, Muppala, Trivedi, “Automated generation 
and analysis of Markov reward models using stochastic reward nets,” Linear 
Algebra, Markov Chains, and Queueing Models, Springer, 1993 
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Stochastic Reward Net Model
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Other High-Level Formalisms

 Many other High-level formalism (like SRN) are 
available and corresponding software packages exist 
(SAN, SPA, ….)

 Can generate/store/solve moderate size Markov models
 Have been extended to non-Markov and fluid 

(continuous state) models [MRSPN, FSPN]
 Ref: Choi, Kulkarni, Trivedi, “Markov Regenerative Stochastic Petri Nets,” 

Perform. Evaluation,1994
 Ref: Horton, Kulkarni, Nicol, Trivedi, “Fluid stochastic Petri nets: Theory, 

applications, and solution techniques,” Eur. J. Oper. Res., 1998
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SRN Model
SRN model automatically converted into CTMC (Markov Reward 
Model)
However, model not scalable as state-space size is extremely large

#PMs per pool #states #non-zero matrix entries

3 10, 272 59, 560

4 67,075 453, 970

5 334,948 2, 526, 920

6 1,371,436 11, 220, 964

7 4,816,252 41, 980, 324

8 Memory overflow Memory overflow

10 - -
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Problems with Markov (or State Space) Models and 
their solutions

 State space explosion or the largeness problem
 Stochastic Petri nets and related formalisms for easy 

specification and automated generation/solution of 
underlying Markov model --- Largeness Tolerance 

 Use hierarchical (Multilevel) model composition
 Largeness Avoidance
 e.g., Upper level : FT or RBD, lower level: Markov chains
 Many practical examples of the use of hierarchical 

models exist
 Can also use state truncation

110



Analytic Modeling Taxonomy

Hierarchical composition
To avoid largeness

Analytic models

Non-state-space methods
Efficiency, simplicity

State-space methods
Dependency capture
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State Space Explosion
 Number of components in systems can be hundreds, 

nay thousands!
 Number of states in a Markov model will be a 

gazillion!
 State space explosion can be avoided by decomposing 

system into subsystems, modeling each subsystem 
separately and then composing sub-model results 
together – SHARPE facilitates this

 Use state-space methods for those subsystems that 
require them, and use simple non-state-space 
methods (RBD, Ftree) for the more “well-behaved” 
parts of the system
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Availability Analysis: SUN Microsystems 

 Carrier-Grade High Availability Software Platform
 Model taking into account hardware component

failures, software component failures and various
types of recovery

 Hierarchical model composition – Markov chains
at the lower-level, RBD at the top level

 Ref: Trivedi, Vasireddy, Trindade, Nathan, Castro, “Modeling High
Availability Systems,” Proc. PRDC 2006.
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Sun Microsystems – overall model hierarchy

…
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Import Graph – SUN Model
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In the Import graph, Nodes are submodels
Arc indicates output of a submodel as an input parameter to another submodel



High-Availability SIP System
 Real problem from IBM

 SIP: Session Initiation Protocol

 Hardware platform: IBM Blade Center

 Software platform: IBM WebSphere

 Telco customer asked IBM for models to quantify this product

 IBM asked me to lead the modeling project

 To quantify system (steady-state) availability           
Ref: Trivedi, Wang, Hunt, Rindos, Smith, Vashaw, “Availability 
Modeling of SIP Protocol on IBM WebSphere,” PRDC 2008

 To quantify a user-oriented metric called DPM                           
Ref: Trivedi, Wang & Hunt. “Computing the number of calls 
dropped due to failures,” ISSRE2010
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Architecture of SIP on IBM WebSphere
 

 

Replication 
domain Nodes

1 A, D
2 A, E
3 B, F
4 B, D
5 C, E
6 C, F

AS: WebSphere Appl. 
Server (WAS)
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Architecture of SIP on IBM WebSphere

118

 Hardware configuration: 
 Two BladeCenter chassis; 4 blades (nodes) on each chassis  (1 chassis 

would have been sufficient from the performance perspective)

 Software configuration:
 2 copies of SIP/Proxy servers (1 sufficient for performance)

 12 copies of WAS (6 sufficient for performance)

 Each WAS instance forms a redundancy pair (replication domain) with 
WAS installed on another node on a different chassis

The system has both, hardware redundancy 
and software redundancy



Software Redundancy 
 Identical copies of SIP proxy used as backups (hot spares)

 Identical copies of WebSphere Applications Server (WAS) used as 

backups (hot spares)

 Type of software redundancy – (not design diversity) but replication 

of identical software copies

 Normal recovery after a software failure – uses time redundancy

 Restart software, reboot  node or fail-over to a software replica; only 

when all else fails, a “software repair” is invoked

SIP Application Server on IBM WebSphere



Design diversity
 Recovery block
 N-version programming
 ……

Classical Techniques

Expensive 
not used much 
in practice!

Design 
diversity

Yet there are 
stringent 

requirements for 
failure-free 
operation

Challenge: Affordable Software Fault Tolerance

Software Fault Tolerance:

A possible answer: Environmental Diversity



Have been known to help 
in dealing with hardware 
transients

RQ: Do they help in dealing 
with failures caused by 
software bugs? 

If yes, why?

Retry 

Restart

Reboot!

1 2

3
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Software Fault Tolerance: New 
Thinking



Failover to an identical software replica
(that is not a diverse version)

Does it 
help? 

If yes,
why?

Thirty five years ago this would be considered crazy!
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Software Fault Tolerance: New 
Thinking



Software Fault Tolerance: New Thinking

Environmental Diversity as opposed to Design Diversity

Our claim is that this (retry, restart, reboot, failover to
identical software copy) may well work since failures
due to Mandelbugs are not negligible. We thus have an
affordable software fault tolerance technique that we
call Environmental Diversity
Ref: Qiu, Zheng, Trivedi, Mura, “Availability Analysis of Systems Deploying Sequences
of Environmental-Diversity-Based Recovery Methods,” IEEE-TR, 2020

Ref: Grottke, Kim, Mansharamani, Nambiar, Natella, Trivedi, “Recovery From Software
Failures Caused by Mandelbugs,” IEEE TR, 2016

Environmental 
Diversity 



Software fault (bug) classification

Bohrbug (BOH) := A bug that is easily isolated and 
that manifests consistently under a well-defined set of 
conditions, because its activation and error propagation 
lack complexity. 

Mandelbug := A bug whose activation depends on the 
environment besides the workload. Environment refers 
to other applications concurrently running, interactions 
with OS and hardware

Aging related bug (ARB) := A bug that leads to the 
accumulation of errors either inside the running application 
or in its system-context environment, resulting in an 
increased failure rate and/or degraded performance. 

124
Ref: Grottke, Trivedi, “Fighting Bugs: Remove, Retry, Replicate and Rejuvenate,” IEEE Computer, 2007
Ref: Dohi, Trivedi, Avritzer, Handbook of Software Aging and Rejuvenation, WSPC, 2020



Dealing with Mandelbugs

 Failures due to Mandelbugs can be tolerated by
 Retrying failed operation, Restarting a process or Rebooting the 

VM
 Failover to an identical replica

 Failures due to Aging-related bugs can be prevented/postponed by
 Software Rejuvenation
 Handbook on Software Aging and rejuvenation, Dohi, Trivedi 

& Avritzer (eds.), World scientific, 2020 
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The underlying idea of Environmental diversity 
 Restart an application (without fixing the bug) and it most likely works --

Why?
 because of the environment where the application is executed has 

changed enough to avoid the fault activation. 
The environment is understood as

 OS resources, other applications running concurrently and sharing the 
same resources, interleaving of operations, concurrency, or 
synchronization. 

This is Fault Tolerance since we do not necessarily fix the fault; fault 
caused a failure but this failure is dealt with by using time redundancy 
hence the user may not experience the failure again on retry
Webinar on Nov. 16: Rethinking Software Fault ToleranceTuesday, November 16, 
20218:00 AM  |  (UTC-07:00) Pacific Time (US & Canada)  |  1 hr Join WebEx 
meeting
https://ieeemeetings.webex.com/ieeemeetings/j.php?MTID=m28e49d331033e6
8d482855f8e38e2c05
Meeting number:2535 155 0625Meeting password:phK49FSWvP3

What is Environmental diversity?
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Fault Types in Several Systems
Bug types in JPL/NASA flight software - “An empirical investigation of fault types in
space mission system software,” Grottke, Nikora, Trivedi. DSN, 2010
Bug types in Linux, MySQL, Apache AXIS, HTTPD - “Fault triggers in open-source
software: An experience report,” Cotroneo, Grottke, Natella, Pietrantuono, Trivedi.
ISSRE, 2013
Bug types in Android operating system - “An Empirical investigation of fault triggers in
Android operating system,” Qin, Zheng, Li, Qiao, Trivedi. PRDC, 2017
Bug types in Linux - “Fault Triggers in Linux Operating System: From Evolution
Perspective,” Xiao, Zheng, Yin, Trivedi. ISSRE, 2017 (all the bug reports in Linux)

Project LoC % BOH % MAN % ARB % UNK

JPL/NASA 61.4 32.1 4.4 2.1

Linux 1.31M 42.2 41.9 8.3 7.6

MySQL 453K 56.6 30.3 7.7 5.4

HTTPD 145K 81.1 10.5 7.0 1.4

AXIS 80K 92.5 3.5 4.0 0.0

Android 65.2 27.0 4.4 3.4

Linux2 55.8 31.7 7.8 4.7
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Back to the Availability Model 

Failures

Physical failures Software failure

Power 
faults OS

Memory faults
NIC faults

Cooling 
faults

Blade 
faults

midplane 
faults

Network 
faults

CPU faults
base faults

Application

I/O (RAID) faults

WAS Proxy

112 components (hardware and software) 
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Availability model of SIP on IBM WebSphere
 Single monolithic Markov model will have extraordinarily 

large number of states – we use a multi-level approach

 Subsystems modeled using Markov chains to capture dependence 
within 

 Fault tree used at higher levels as independence across 
subsystems can be reasonably assumed

 This is an example of hierarchical composition
 A single monolithic model is not constructed/stored/solved
 Each submodel is built and solved separately and results are 

propagated up to the higher-level model
 Our software package SHARPE facilitates such hierarchical 

model composition
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Availability model of SIP on IBM WebSphere

 SIP top level of the availability model

AS6

6C BSC CM1

AS5

5C BSC CM1

AS4

4B BSB CM1

AS3

3B BSB CM1

AS2

2A BSA CM1

AS1

1A BSA CM1

AS12

6F BSF CM2

AS11

3F BSF CM2

AS10

5E BSE CM2

AS9

2E BSE CM2

AS8

4D BSD CM2

AS7

1D BSD CM2

App 
servers

System Failure

PX1

P1 BSG CM1

PX2

P2 BSH CM2

proxy

system

k of 12

iX: ith appserver on node X
Pi: ith proxy server
BSX: node X hardware
CMi: chassis i hardware
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 Each subsystem’s model (hardware and 
software) is solved individually and combined 
for the overall system solution.

Analytical Modeling

CM

MP Cool Pwr

CM Failure

BS

Base CPUMem RAID OS
eth

eth1 eth2

nic1 nic2esw1 esw2

BS Failure

ModelingModeling

Modeling

UP DN DW
⊥OS

⊥OS

RP
⊥sp

bOS⊥OS

(1-bOS)⊥OS
DT

⊥OS

OS SW subsystem
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CM

MP Cool Pwr

CM Failure

Chassis failure

BS

Base CPU Mem RAID OS
eth

eth1 eth2

nic1 nic2esw1 esw2

BS Failure

Blade server failure

A circle as a leaf node is a basic event
An inverted triangle is a shared event
A square indicates a submodel

Availability model of SIP on IBM WebSphere

 Availability models of a Blade Server and Common Blade Center 
Hardware
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Availability model of SIP on IBM WebSphere

 Markov Availability models of subsystems

UP U1

DN

RP

cmp⋅λmp

(1-cmp)⋅λmp

αsp

µmp

αsp

midplane model Cooling subsystem model 

UP U1 RP

DN

DW
2λc

λc

αsp

µc

λc

µ2c

αsp
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Availability model of SIP on IBM WebSphere

 Availability models of subsystems

UP U1

DN

RP DW
2cps⋅λps αsp

µps

λps

µ2ps

2(1-cps)⋅λps
αsp

λps

UP D1 RP
2λcpu αsp

µcpu

UP D1 RP
4λmem αsp

µmem

Power domain model 

CPU model 
memory model 

Base, Switch and NIC 

UP DN RP
λ αsp

µ
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RAID model 

OS model 

Availability model of SIP on IBM WebSphere

 Availability models for subsystems (cont.)

UP DN DWλOS

µOS

RP
αsp

bOSβOS

(1-bOS)βOS
DT

δOS

µ2hd

UP U1 RP CP

DN

RBkp

µ_ bkp

µhd

λhd

λsp2*λhd µhd λhd_ src

λhd_ dst

DNsrc

µ2hd

UP U1 RP CP

DN
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µ_ bkp

µhd

λhd

λsp2*λhd µhd λhd_ src

λhd_ dst

DNsrc

µ2hd

UP U1 RP CP

DN
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λhd

λsp2*λhd µhd λhd_ src

λhd_ dst

DNsrc

µ2hd

UP U1 RP CP

DN

RBkp

µ_ bkp

µhd

λhd

λsp2*λhd µhd λhd_ src

λhd_ dst

DNsrc

µ2hd

UP U1 RP CP

DN

RBkp

µ_ bkp

µhd

λhd

λsp2*λhd µhd λhd_ src

λhd_ dst

DNsrc

µ2hd

UP U1 RP CP

DN

RBkp

µ_ bkp

µhd

λhd

λsp2*λhd µhd λhd_ src

λhd_ dst

DNsrc
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Markov Availability model WebSphere AP 
Server

UA UR UB
(1-r)ρm

rρm
qρa

(1-q)ρa

bβm

RE
(1-b)βm

µ

UOUP
γ eδ2

1D

eδ2dδ1

(1-e)δ2

UN

δm

1N

(1-d)δ1

(1-e)δ2

2N (1-d)δ1

(1-e)δ2

eδ2 dδ1

 Failure detection
 By WLM
 By Node Agent
 Manual detection

 Recovery
 Node Agent

 Auto process restart
 Manual recovery

 Process restart
 Node reboot
 Repair

• Application server and proxy server (with escalated levels of recovery)
• Delay and imperfect coverage in each step of recovery  modeled
• Use of restart, failover to an identical replica or reboot as a method of     

recovery after a software failure
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Hierarchical Composition

CM

MP Cool Pwr

CM Failure

BS

Base CPU Mem RAID OS
eth

eth1 eth2

nic1 nic2esw1 esw2

BS Failure

UA UR UB
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eδ2 dδ1

UP U1
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RP DW
2cps⋅λps αsp

µps

λps

µ2ps

2(1-cps)⋅λps
αsp

λps

AS6

6C BS C CM 1

AS 5

5C BS C CM 1

AS 4

4B BS B CM 1

AS 3

3B BS B CM 1

AS2

2A BS A CM 1

AS1

1A BS A CM 1

AS 12

6F BS F CM 2

AS 11

3F BS F CM 2

AS 10

5E BS E CM 2

AS9

2E BS E CM 2

AS 8

4D BS D CM 2

AS7

1D BS D CM 2

App 
servers

System Failure

PX1

P1 BS G CM 1

PX 2

P2 BS H CM 2

proxy

system

k of 12 AS1

1A BSA CM1

A single monolithic Markov 
model will have too many states
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Import graph for SIP Availability Model

138



Model Parameterization
 Types of parameters 

 Hardware component failure rates
 Software component failure rates
 Detection, restart, reboot, repair delays
 Imperfect coverages for each of the above recovery phases

 The parameter values obtained from
 Field data for hardware component failure rates
 High availability testing for detection/restart/reboot delays
 Agreed upon assumptions for other parameters

 Uncertainty in parameter values (assumed value or based on 
limited test data)
 Sensitivity analysis w.r.t. that parameter performed
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System and subsystem downtime (min/year)

142

 Downtime at different levels of AS redundancy (k-1)
 Downtime of individual components  



Availability model of SIP on IBM 
WebSphere (contributions)

 Developed a very comprehensive availability model
 Hardware and software failures
 Hardware and Software failure-detection delays
 Software Failover delay
 Escalated levels of recovery

 Automated and manual restart, reboot, repair
 Imperfect coverage (detection, failover, restart, reboot)

 Many of the parameters collected from experiments, some obtained 
from tables; few of them assumed

 Detailed sensitivity analysis to find bottlenecks and give feedback to 
designers

 Developed a new method for calculating DPM (defects per million)
 Taking into account interaction between call flow and failure/recovery
 Retry of messages (this model will be published in the future)

 This model was responsible for the sale of the system by IBM
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Hierarchical Composition

 Many more examples of such models can be found in 
the book (Trivedi & Bobbio, Reliability and 
Availability: Modeling, Analysis, Applications, 
Cambridge University Press, 2017) and other papers
 Availability Models
 Reliability Models
 Performance Models
 Performability Models
 Survivability Models
 Dynamic Fault Tree Models
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Hierarchical Models
 Main reason for hierarchical (or multilevel) models: avoid 

generating/solving large monolithic models; that is, for 
tractability/scalability 

 In SHARPE we can mix and match different paradigms and to 
arbitrary levels

 Can choose the “right” paradigm for each subsystem
 Note that some tools/approaches use hierarchy merely for 

specification and a monolithic model is constructed by the tool 
 We are advocating hierarchy not only for specification but also 

for solution – hence, hierarchical composition
 Hierarchy does not always mean an approximation
 Most practical problems I have solved have 2 or more levels 

with the top level being RBD/ftree and Markov models at the 
lowest level
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Hierarchical Composition
 Matrix-Level vs. Model-Level vs. System-Level Decomposition
 Multi-level modeling formalism -- meta-modeling language? 
 What kinds of quantities to pass between sub-models?
 Exact vs. approximate solution
 If approximate, bounding/estimating errors of approximation?
 Import graph

 Acyclic
 Cyclic  Fixed-point iteration
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Analytic Methods Taxonomy

Hierarchical models
Largeness avoidance

Analytic methods

Non-state-space methods
Efficiency, simplicity

State-space models
Dependency capture

Fixed point iteration
Nearly independent
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Scalable Model for IaaS Cloud 
Availability and Downtime

Ref: Ghosh, Longo, Frattini, Russo, Trivedi,
“Scalable Analytics for IaaS Cloud Availability,” 

IEEE Trans. Cloud Computing, 2014
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Monolithic SRN Model
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Monolithic SRN Model
Monolithic SRN model is automatically translated into CTMC or 
Markov Reward Model
However the model not scalable as state-space size of  this model is 
extremely large

#PMs per pool #states #non-zero matrix 
entries

3 10, 272 59, 560

4 67,075 453, 970

5 334,948 2, 526, 920

6 1,371,436 11, 220, 964

7 4,816,252 41, 980, 324

8 Memory overflow Memory overflow

10 - -
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Decompose into three Sub-models

SRN sub-model for hot pool

SRN sub-model for warm pool
SRN sub-model for cold pool
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Import graph 
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Many questions

 Existence of Fixed Point (easy): IEEE TCC 
2014    (In a more general setting: Mainkar 
& Trivedi paper in IEEE-TSE, 1996)

 Uniqueness (some cases)
 Rate of convergence
 Accuracy
 Scalability
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Monolithic vs. interacting sub-models

 #states, #non-zero entries
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Steps for system availability modeling

 List all possible component level failures (hardware, software)
 List of all failure detectors & match with failure types
 List all recovery mechanisms & match with failure types
 Allocation of software modules to hardware units
 Formulate the model
 Face validation and verification of the model
 Parameterization of the model (tables, websites, experiments)
 Solve the model (using SHARPE, SPNP or similar software 

packages) to detect bottlenecks, sensitivity analysis, suggest 
parameters to be monitored more accurately

 What-if analysis to suggest improvements
 Validate the model
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Outline

 Introduction and Motivation
 Reliability and Availability Models
 Conclusions
 References
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System Reliability/Availability Models

 Techniques & software packages are available for the 
construction & solution of reliability and availability models of 
real systems

 System decomposition followed by hierarchical model 
composition is the typical approach

 Modeling has been used 
 To compare alternative designs/architectures (Cisco)
 Find bottlenecks, answer what if questions, design optimization and 

conduct trade-off studies (IBM Cloud)
 At certification time (Boeing)
 At design verification/testing time (IBM SIP)
 Configuration selection phase (DEC)
 Operational phase for system tuning/on-line control 
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System Reliability/Availability Models 
 Model Types in Use

 Non-state-Space: Reliability Block Diagram, Fault tree, Reliability 
graph

 State-space: Markov models & stochastic Petri nets, Semi-Markov, 
Markov regenerative and non-homogeneous Markov models

 Hierarchical composition
 Top level is usually an RBD or a fault tree
 Bottom level models are usually Markov chains

 Fixed-point iterative
 Solution types

 Analytic closed-form
 Analytic numerical (using a software package)
 Simulative 

 Software packages
 SHARPE or similar tools are used to construct and solve such models

 Structural as well as parametric assumptions means that numbers 
produced should be taken with a grain of salt
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Challenges in Reliability/Availability Models
 Model Largeness (in spite of: hierarchy, fixed-point 

iteration, approximations) – Smartgrid models
 Dealing with non-exponential distributions (in spite of 

SMP, MRGP, NHCTMC, PH)
 Service (or user)-oriented measures as opposed to 

system-oriented measures
 Combining performance, power and failure/repair 

 Performability, two-level models, use of Markov-reward models

 Model Parameterization
 Model Validation and Verification
 Parametric uncertainty propagation
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Model Parameterization
 Hardware/Software Configuration parameters
 Hardware component MTTFs
 Software component MTTFs

 OS, IBM Application, customer software, third party
 Hardware/Software Failover times
 Restart/Reboot times
 Coverage (Success) probabilities

 Detection, location, restart, reconfiguration, repair
 Repair time

 Hot swap, multiple component at once, DOA (dead on arrival), 
shared/not shared, field service travel time, preventive vs. 
corrective

 Uncertainty propagation: Dealing with not only Aleatory (built into 
the system models) but also epistemic (parametric) uncertainty
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Message to Young Researchers
 Pick a real problem rather than one from literature 

whenever possible
 There should be plenty of real problems in Industry
 Keep an open mind
 Ask questions and Listen carefully

 It is possible to write scholarly articles based on work 
done on real problems

 Use software packages [e.g., SHARPE, SPNP] whenever 
applicable [as opposed writing your own code to 
generate and solve models]
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Outline of the book: Reliability and 
Availability Engineering

Part I – Introduction (Chapters 1:3)

Part II - Non-state-space models (Chapters 4:8)

Part III - State-space Models with Exponential        
Distributions (Chapters 9:12)

Part IV - State-space Models with Non-
Exponential Distributions  (Chapters 13:15)

Part V - Multi-Level Models  (Chapters 16:17)

Part VI  - Case Studies (Chapter 18)
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Outline of the book: Reliability and 
Availability Engineering
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Outline

 Introduction and Motivation
 Reliability and Availability Models
 Conclusions
 References
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Thank you!
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Contact Information and more sources

Kishor Trivedi: ktrivedi@duke.edu
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