
Reliability and Availability of
Hardware-Software systems

IFIP Performance 2021 Conference
Tutorial

November 8, 2021

1

ktrivedi@duke.edu

Tutorial Objectives

 To provide an overview and state of the art of
analytic methods for reliability/availability
assessment of hardware-software systems

 To provide real-life examples that show the
use of these methods in practice

 To provide current challenges faced in such
assessment projects

 Ref: Trivedi & Bobbio, Reliability and Availability:
Modeling, Analysis, Applications, Cambridge University Press, 2017

2

Administrative matters

 Students may get a certificate for participation
 Fill in a google form

https://docs.google.com/forms/d/e/1FAIpQLSd5kIKll9jl8Ikq
Hic3KwIBZhbdbk8qoD9W7BYNAkS9meLL2g/viewform?usp=
sf_link

 Meet The Star event for PhD Students & Postdocs
https://www.performance2021.deib.polimi.it/meet-the-star-
event/

3

https://docs.google.com/forms/d/e/1FAIpQLSd5kIKll9jl8IkqHic3KwIBZhbdbk8qoD9W7BYNAkS9meLL2g/viewform?usp=sf_link

Tutorial Outline

 Motivation and Introduction
 Reliability and Availability Assessment
 Methods in Use
 Illustrated through several real-world examples

of hardware, software and combined hardware-
software systems

 Concluding remarks
 References

4

Health & Medicine

Communication

Avionics

Entertainment Banking

Our Dependence on Technical Systems
These systems need to be highly reliable

5

Need for a new term

 Reliability is often used in a generic sense as an
umbrella term.

 Reliability is also used as a precisely defined
mathematical function.

 To remove the confusion, IFIP WG 10.4
proposed Dependability as an umbrella term
and Reliability is to be used as a well-defined
mathematical function.

6

Dependability– An umbrella term

 Trustworthiness of a system such that reliance can justifiably be
placed on the service it delivers

Dependability

Attributes
Availability
Reliability
Safety
Maintainability

Fault Prevention
Fault Removal
Fault Tolerance
Fault Forecasting

Means

Threats
Faults
Errors
Failures

7

Difference between reliability and
availability

8

 reliability refers to failure-free system
operation during an entire interval

 availability refers to failure-free system
operation at a given instant of time

 Possible to combine the two under the notion
of interval reliability

Faults, Errors, Failures

 Failure occurs when the delivered service no longer
complies with the desired service

 Error is that part of the system state which is liable
to lead to subsequent failure

 Fault is adjudged or hypothesized cause of an error

Faults are the cause of errors that may lead to failures
Fault Error Failure

9

A Classification of Faults

 Physical vs. Design vs. Interaction
 Network: Node vs. Link
 Hardware vs. Software vs. Human
 Hardware: Permanent, Intermittent, Transient
 Software: Bohrbugs, Mandelbugs, Aging-related bugs

10

Failure Classification

 Omission failures
 Crash failures
 Infinite loop

 Response or Value failures
 Timing failures

 Late (aka performance failure or dynamic failures)
 Safe vs. Unsafe failure
 Security failures: Breach of confidentiality or breach of integrity

or loss of use

11

12

Basic Definitions

Basic Definitions
 One shot Reliability R:

When is this applicable?

 (time-dependent) Reliability R(t) :
X : Time to failure of a system (TTF), or lifetime random
variable
F(t): cumulative distribution function of system lifetime

F(t) = P(X ≤ t)

Reliability is the probability that the system has not failed
until time t; i.e., complementary distribution function of TTF

() () ()tFtXPtR −=>= 1

13

Basic Definitions

 Mean Time To system Failure:

Let f(t): prob. density function of system lifetime (TTF)

[] () ()∫∫
∞∞

===
00

dttRdtttfXEMTTF

Make a clear distinction between TTF, R(t) and MTTF

14

Basic Definitions: Reliability

1

0

R(t)

ta b

R(0) = 1
lim R(t) = 0
t∞

R(t) = non-increasing

R(a)

Copyright © 2021 by K.S. Trivedi6

Basic Definitions: Reliability

1-q

0

R(t)

ta b

R(0) = 1-q
lim R(t) = 0
t∞

R(t) = non-increasing

R(a)

Copyright © 2021 by K.S. Trivedi6

q is the prob. that item
is defective to begin with

F(t)=1-(1-q)e-λt

Mass at Origin

 Described in the previous slide is useful
 Dead on arrival (Lemon)
 Can be used in non-state space models if the tool

allows such distributions with mass at origin to
be specified – our tool SHARPE does allow this

 In Phased Mission Models (PMS)
 Can be easily incorporated in Markov models by

properly assigning initial state probabilities

Copyright © 2021 by K.S. Trivedi

Basic Definitions

 Availability

Operating and providing
required functions

Failed and
being
restored

1

0

Operating and providing
required functions

System Failure and Restoration Process
I(t) is the indicator function

I(t)

18

Basic Definitions

 Instantaneous Availability A(t):

 From the figure in the last slide, the availability at time t
becomes:

 This is sometimes called point-wise availability,
instantaneous availability, or transient availability. A(t)
can be asked for at any point t in time

 Can unify R(t) and A(t) as Interval Reliability

A(t) = P (system working at t)

A(t)=P(I(t)=1)

19

Basic Definitions

 Interval reliability measure introduced by Barlow and Hunter
in 1961, combines availability A(t) and reliability R(τ) :
 Available when needed (at time t) & as long as needed (for τ time units)

 Interval reliability and related concepts further developed in:
 Wang & Trivedi, Modeling User-Perceived Service Reliability based

User-Behavior Graphs, IJRQS, 2011

 Trivedi & Bobbio, Reliability and Availability: Modeling, Analysis,
Applications, Cambridge University Press, 2017

 Trivedi, Wang & Hunt, Computing the number of calls dropped due to
failures, ISSRE, 2010

 Mondal, Yin, Muppala, Alonso, Trivedi, Defects per Million Computation
in Service-Oriented Environments, IEEE Trans. on Services Comp., 2015

20

Basic Definitions
Limiting or Steady-state availability (Ass) or just availability
Long-term probability that the system is available (limit of
A(t) as t → ∞):

MTTF is the system mean time to failure
MTTR is the system mean time to recovery

TTR may consist of many phases
For a non-fault-tolerant system, the formula holds
without any distributional assumptions

MTTRMTTF
MTTF

+
=

ssA

21

Basic Definitions

Steady-state availability (Ass) expression also applies to a
fault-tolerant system:

MTTF is the “equivalent” system mean time to failure,
a complex combination of component MTTFs
MTTR is “equivalent” system mean time to recovery

Ref: Example 8.11 in: Trivedi, Probability and Statistics with Reliability, Queuing, and
Computer Science Applications. John Wiley, 2nd edition, 2001
Ref: Lanus, Yin,Trivedi: Hierarchical composition and aggregation of state-based availability
and performability models. IEEE Trans. Reliab. 2003
Ref: Section 9.5 in: Trivedi and Bobbio, Reliability and Availability Engineering, Cambridge
University Press, 2017

MTTRMTTF
MTTF

+
=ssA

22

Basic Definitions

 Downtime in minutes per year
 In industry, steady-state (un)availability is usually

presented in terms of annual (steady-state) downtime.

 Downtime = 8760×60 ×(1- Ass) minutes.

 It is also common to define the availability in terms of
number of nines

5 NINES (Ass = 0.99999) 5.26 minutes annual downtime
4 NINES (Ass = 0.9999) 52.56 minutes annual downtime

23

Number of Nines– Reality Check

 49% of Fortune 500 companies experience
at least 1.6 hours of downtime per week

 Approx. 80 hours/year=4800 minutes/year

 Ass=(8760-80)/8760=0.9908

 That is, between 2 NINES and 3 NINES!

24

Example Failures from High Tech companies

Mar. 2015 , Gmail was down for 4 hours and 40 min.

Mar. 2015, Down for 3 hours affecting Europe and US

Sept. 2015, AWS DynamoDB down for 4 hours impacting
among others Netflix, AirBnB, Tinder

Dec. 2015, Microsoft Office 365 and Azure down for 2
hours

Mar. 2015, Apple ITunes, App Stores long 0utage: 12 hours

25

More examples of real failures

Feb. 2017 Amazon S3 service outage (almost 6 hours)

Jul. 2017 - Google Cloud Storage service outage (3
hours and 14 min.) - API low-level software defect

Jul. 2017 - Microsoft Azure service outage (4 hours) –
Load Balancer Software bug

26

More Recent Examples

 In Commercial aircrafts (Boeing 737 Max
software problem)
 Ethiopian Airlines Flight, March 2019,

149 people died
 Lion Air Flight crash, Oct. 2018,

189 people died

27

Failures & Downtime Lead to

 Loss of Reputation
 Loss of Revenue
 Possible Loss of Life

28

 That reduce system failures and reduce downtime
due to these failures (contributed by hardware,
software and humans)

 For System Reliability/Availability assessment and
bottleneck detection to help decide the most cost-
effective path to improvement of reliability/availability

Need Methods

29

Methods to Improve Dependability
 Fault Avoidance
 Employ highly reliable components

 Fault Removal
 Careful Testing to remove faults

 Fault Tolerance
 Utilize Redundancy

 Fault/Failure Forecasting
 Identify bottlenecks (at design time)
 Predict when failures may occur and thence use for

preventive maintenance (at operational time)
30

Methods Overview (Redundancy)

 Redundancy

 Coding

 Time

 Use of Multiple Redundant Components, i.e., more

components than required for the performance needs

31

Coding Redundancy

Coding

Hamming

CRC

Reed-Muller
Reed-Solomon

32

Time Redundancy

Time

Retry operation

Restart process

Checkpoint/
restart program

Retransmit message

33

If at first you don’t succeed, try and try again

Some Notes

 Time redundancy is time-honored method to
tolerate hardware transient faults

 It is now recognized that time redundancy (retry,
restart, reboot) can also be used to recover from
software failures – more on this later

34

Multiple Redundant Components

Multiple
components

Parallel
(1 of n) (static)

Stat. Identical

Non-identical

k of n (static)

Stat. Identical

Non-identical

Standby
(dynamic)

Cold

Warm

Hot

35

Some More Notes
 In hardware redundancy, statistically identical

components are commonly (though not always) used
 In software, it was thought in 1970’s that identical

redundant copies of software will not be useful for
fault tolerance

 So, classical techniques for Software Fault Tolerance
evolved on the idea of design diversity
 Recovery block
 N-version programming

 It is now recognized that failover to identical
software copy does help in recovering after software
failures – more on this later

36

Maintenance

Maintenance

Reactive/
unscheduled

Staged
Detection
Location

Recovery/repair

Escalated
Restart
Reboot
Repair

Proactive/
Preventive/
scheduled

Time based

Condition
based

37

Preventive maintenance only useful if there is aging

Some More Notes

 Conventional wisdom is that unlike hardware,
software does not age, so preventive maintenance
does not help in software

 However, since 1995 it has been recognized that
software does age and software rejuvenation
(preventive maintenance)
does help improve
software reliability/availability

38

 That reduce system failures and reduce downtime
due to these failures (contributed by hardware,
software and humans)

 For System Reliability/Availability assessment and
bottleneck detection

Need Methods

39

Quantitative Assessment methods
for system reliability and availability

 Black-box or Data-driven
(measurement data + statistical inference):

 The system is treated as a monolithic whole, without
explicitly taking its internal structure into account

 Very expensive especially for ultra-reliable systems
 ALT can help reduce the cost

 Generally applicable to small systems that are not very
highly reliable

 Not feasible for system under design/development

40

Quantitative Assessment approaches
 White-box (or Model-driven):
 When no data is available for the system as a whole
 Stochastic Model (e.g., RBD, Ftree, Markov chain)

constructed based on the known internal structure of
system – its components, their characteristics and
interactions between components

 Derive the behavior of ensembles (combinations of
components to form a system) from first principles of
probability theory

 Used to analyze a system with many interacting and
interdependent components

 Need input parameters for components and subsystems
41

Quantitative Assessment approaches

 Combined approach
 Use black-box approach at subsystem/component

level
 Use white-box approach at the system level
 Thus, a combined Data + Model driven approach

42

Two Types of Uncertainty

 Aleatory (irreducible)
 Randomness of event occurrences in the real system

captured by various distributions in the Probability
Model (e.g., RBD, Fault tree, Markov chain)

 Epistemic (reducible)
 Introduced due to finite sample size in estimating

parameters to be input to the Probability Model
 Propagating epistemic uncertainty through a stochastic

Model is a topic that will not be covered in this tutorial –
can be a subject of another tutorial!

43

Outline

 Introduction and Motivation
 Reliability and Availability Models
 Conclusions
 References

44

Overview of Assessment Methods

Numerical solution via a tool

Closed-form
solution

Model-driven

Discrete-event simulation

Hybrid

Analytic methods
Numerical solution
of analytic models
not as well utilized;
unnecessarily excessive
use of simulation

Quantitative Assessment

Data-driven Error/Failure/Recovery data analytics

45

Analytic Methods Taxonomy

Hierarchical composition

Fixed point iterative methods

Analytic methods

Non-state-space methods

State-space methods

Model-driven

Discrete-event simulation

Hybrid

Analytic Methods

Quantitative
Assessment

Data-driven

46

Non-State-Space Methods : taxonomy

Non-state space methods

SP reliability block diagrams (RBD)

Fault trees

Fault trees with repeated events

Non-SP reliability block diagrams (relgraph)

Extensions such as multi-state components/systems, phased-mission systems etc.

47

Cisco & Juniper Routers

RBD of Cisco 12000 GSR

RBD of Juniper M20
K. Trivedi, “Availability Analysis of Cisco GSR 12000 and Juniper M20/M40”
Cisco Internal report, 2000.
Red colored block means a sub-model.

48

Modeling High Availability Systems: Sun
Microsystems

Top level RBD consists of all the subsystems joined by
series, parallel and k/n blocks.
Red color means a sub-model.

Trivedi et al., Modeling High Availability Systems,
PRDC’06 Conference, Dec. 2006, Riverside, CA

Sun Microsystems

49

Series-Parallel RBDs

 System reliability (availability) formulas :
 Assuming statistical Independence of failures (and repairs)
 Reliabilities (availabilities) multiply for blocks in series

 Un-reliabilities (un-availabilities) multiply
for blocks in parallel

 Blocks in k-out-of-n have a simple formula
 Identical case Rk|n= ∑𝑗𝑗=𝑘𝑘

𝑛𝑛 𝑛𝑛
𝑗𝑗 𝑅𝑅𝑗𝑗(1 − 𝑅𝑅)𝑛𝑛−𝑗𝑗

50

∏
=

=
n

i
is RR

1

Problem 4.22 in Greenbook

Copyright © 2021 by K.S. Trivedi 51

Needs kofn non-identical

Series-Parallel RBDs

 System reliability (availability) formulas :
 Assuming statistical Independence of failures (and repairs)
 Reliabilities (availabilities) multiply for blocks in series

 Un-reliabilities (un-availabilities) multiply
for blocks in parallel

 Blocks in k-out-of-n have a simple formula
 Identical case Rk|n= ∑𝑗𝑗=𝑘𝑘

𝑛𝑛 𝑛𝑛
𝑗𝑗 𝑅𝑅𝑗𝑗(1 − 𝑅𝑅)𝑛𝑛−𝑗𝑗

 Non-identical case

>=

=

⋅+⋅−= −−−

ijR
R

RRRRR

ij

n

nknnknnk

 when ,0
1

)1(

|

|0

1|11||

52

∏
=

=
n

i
is RR

1

Fault Trees
 Fault Tree is a pessimist’s paradigm as opposed to RBD that can be

considered optimists’ paradigm
 Components are represented as leaves or terminal nodes

 Internal nodes are logic gates and Root node indicates system
failure

 Components or subsystems in series are connected with OR gates

 Components or subsystems in parallel are connected with AND
gates

 Failure of a component or subsystem causes the corresponding
input to the gate to become TRUE

 Whenever the output of the topmost gate (root node) is TRUE, the
system is considered failed

53

Fault Tree Model of GE Truck- AC6000

TOPS = Suspension
BR = Brake Rigging
L = Liner
O = Others

S OLBR

54

Fault Tree Model of GE Equipment
Ventilation System

Fault Tree with Repeated events; inverted triangle indicates such events

55

56

Software Package SHARPE

 SHARPE: Symbolic-Hierarchical Automated Reliability and
Performance Evaluator

 Stochastic Modeling tool installed at over 1000 Sites;
companies and universities

 Ported to most architectures and operating systems
 Used for Education, Research, Engineering Practice
 Users: Boeing, 3Com, EMC, AT & T, Alcatel-Lucent, IBM,

NEC, Motorola, Siemens, GE, HP, Raytheon, Honda,…
 http://sharpe.pratt.duke.edu/
 It is the core of Boeing’s internal tool called IRAP

A Fool with a Tool is still a fool

57

http://sharpe.pratt.duke.edu/

Fault trees

 Major characteristics:
 Fault trees without repeated events can be solved in polynomial

time
 Fault trees with repeated events -Theoretical complexity:

exponential in number of components

 Use Factoring (conditioning)

 Find all minimal cut-sets & then use Sum of Disjoint products (SDP) to
compute reliability

 Use BDD (Binary Decision Diagram) approach

 In practice, can solve fault trees with thousands of components

58

Solution time for Very Large Fault trees

59

Such large models can be solved because of independence assumption – non-states-space models

Fault Trees (Continued)

 Extensions to Fault-trees include a variety of different gate

types: NOT, EXOR, Priority AND, cold spare gate,

functional dependency gate, sequence enforcing gate, etc.

Some of these are “static” while others are “dynamic”

gates

60

Reliability Graph (relgraph)

 Consists of a set of nodes and edges

 Edges represent components that can fail

 Source and target (sink or terminal) nodes

 System fails when no path from source to terminal

 A non-series-parallel RBD

 S-t connectedness or network reliability problem

61

Relgraphs

 Solution methods for Relgraph
 Find all minpaths followed by SDP (Sum of Disjoint

Products)
 BDD (Binary Decision Diagrams)-based method
 Factoring or conditioning
 Monte Carlo method

 The first two methods have been implemented in
our SHARPE software package

62

Problem 5.8 in Greenbook

Copyright © 2021 by K.S. Trivedi 63

Water distribution network; s=1 and t=2

SHARPE Input file for Problem 5.8 in
Greenbook

* PROBLEM 5.8
relgraph graph58
s 3 prob(0.1)
3 4 prob(0.1)
3 5 prob(0.1)
4 6 prob(0.1)
4 7 prob(0.1)
5 6 prob(0.1)
5 8 prob(0.1)
6 9 prob(0.1)
7 9 prob(0.1)
8 9 prob(0.1)
9 t prob(0.1)
end

echo list of minpaths
minpaths(graph58)
echo (s-t)-Reliability of Problem 5.8
expr 1-sysprob(graph58)

end

64

SHARPE Output for Problem 5.8 in
Greenbook

Copyright © 2021 by K.S. Trivedi 65

list of minpaths

Minpaths for system graph58:

{s->3, 3->5, 5->8, 8->9, 9->t}
{s->3, 3->5, 5->6, 6->9, 9->t}
{s->3, 3->4, 4->7, 7->9, 9->t}
{s->3, 3->4, 4->6, 6->9, 9->t}

(s-t)-Reliability of Problem 5.8
1-sysprob(graph58): 7.940549e-001

Avionics

 Reliability analysis of each major subsystem
of a commercial airplane needs to be carried
out and presented to Federal Aviation
Administration (FAA) for certification

Real world example from Boeing Commercial Airplane Company

67

Reliability Analysis of Boeing 787

 Most of the subsystems are improved or modified
versions of subsystems used in earlier planes
 Models are also modified version of the earlier

models
 Occasionally there is an entirely new subsystem

 Model needs to be done from scratch
 Current Return Network in Boeing 787 is one such

example
 Several of my former students are in the Boeing

Commercial Airplane Reliability Engineering group

68

Reliability Analysis of Boeing 787

A2

A4

A5

A1

A11

A13

A14

A7

A8

A9

A6

A10

A3
B3

B4

B6

B1

B13

B14

B15

B8

B9

B10

B7

B11

B2

B12

A12

B5

B16

C1

C3

C4

C5

C2

C6

D3

D5

D7

D1

D16

D17

D19

D9

D12

D13

D8

D14

D2

D15

D4

D18

D6

D10

D20

D11
E6

E7

E8

E5

E1

E2

E3

E4

E10

E11

E12

E9

E14

E13

target

F1

F8

F3

F2
F4

F5

F6

F9

F7

F10

source

 Current Return Network Modeled as a Reliability Graph

69

Reliability Analysis of Boeing 787 (cont’d)

 Solution methods implemented in our SHARPE
software package for relgraph
 Find all minpaths followed by SDP (Sum of Disjoint

Products)
 BDD (Binary Decision Diagrams)-based method

 Boeing tried to use SHARPE for this problem but
…

70

Reliability Analysis of Boeing 787 (cont’d)

A2

A4

A5

A1

A11

A13

A14

A7

A8

A9

A6

A10

A3
B3

B4

B6

B1

B13

B14

B15

B8

B9

B10

B7

B11

B2

B12

A12

B5

B16

C1

C3

C4

C5

C2

C6

D3

D5

D7

D1

D16

D17

D19

D9

D12

D13

D8

D14

D2

D15

D4

D18

D6

D10

D20

D11
E6

E7

E8

E5

E1

E2

E3

E4

E10

E11

E12

E9

E14

E13

target

F1

F8

F3

F2
F4

F5

F6

F9

F7

F10

source

 Too many minpaths

 Idea: Compute bounds instead of exact reliability
 Lower bound by taking a subset of minpaths
 Upper bound by taking a subset of mincuts

71

Reliability Analysis of Boeing 787 (cont’d)

 Our Approach : Developed a new efficient algorithm for
(un)reliability bounds computation and incorporated in SHARPE

• 2011 patent for the algorithm jointly with Boeing/Duke
• “Fast computation of bounds for two-terminal network reliability”,

EJOR 2014
• Satisfying FAA that SHARPE development used DO-178 B software

standard was the hardest part
• As per A.V. Ramesh (Boeing), this algorithm (and SHARPE) are always

used for modeling CRN subsystem in other Boeing commercial aircraft
72

RBD->Relgraph->ftree

 Series-parallel RBD and Fault trees without
repeated event are equivalent

 Relgraph is more powerful than RBD since non-
series-parallel behavior can be accommodated

 Fault trees with repeated event are more powerful
than relgraphs

 Most scalable method is the bounding algorithm
for relgraphs; this needs to be extended to fault
trees

73

Power-hierarchy of modeling formalisms

State space

Non-State space

74

Non-state-space Methods (cont’d)
 Non-state-space methods are easy to use and have relatively fast

algorithms for system reliability, system availability, system MTTF & to
find bottlenecks assuming stochastic independence between system
components
 Series-parallel composition algorithm
 Factoring (conditioning) algorithms
 All minpaths followed by Sum of Disjoint Products (SDP) algorithm
 Binary Decision Diagrams (BDD) based algorithms
 Bounding algorithm for relgraphs

 All of the above implemented in SHARPE

 Failure/Repair Dependencies are often present; RBDs, relgraphs,
FTREEs cannot easily handle these (e.g., shared repair, warm/cold
spares, imperfect coverage, non-zero switching time, travel time of
repair person, reliability with repair).

75

State-space methods : Markov chains
 To model complex interactions between components, need to

use paradigms like Markov chains or more generally state space
models.

 Many examples of dependencies among system components
have been observed in practice and captured by continuous-
time Markov chains (CTMCs).

 Extension to Markov reward models makes computation of
measures of interest relatively easy.

76

Analytic Methods Taxonomy

Analytic methods

Non-state-space methods

State-space methods
e.g., Cont. time Markov chain (CTMC)

77

Markov availability model of the cooling
subsystem (IBM BladeCenter)

78

UP U1 RP

DN

DW
2λc

λc

αsp

µc

λc

µ2c

αsp

On-line repair, travel time of repair person explicitly modeled

Markov availability model of the power
domain subsystem (IBM BladeCenter)

79

UP U1

DN

RP DW
2cps⋅λps αsp

µps

λps

µ2ps

2(1-cps)⋅λps
αsp

λps

Imperfect coverage (or common mode failure),
travel time of repair person

Markov model of Linux OS on IBM BladeCenter

UP DN DWλOS

µOS

RP
αsp

bOSβOS

(1-bOS)βOS
DT

δOS

Detection delay, imperfect coverage, two-levels of
recovery modeled

80

Steady State Solution

Copyright © 2021 by K.S. Trivedi 81

Interpret the above expression as MTTF/(MTTF+MTTR)

Availability Model of a Replication Domain with two Appservers

 Failure detection
 By WLM
 By Node Agent
 Manual detection

 Recovery
 WLM

 Failover
 Node Agent

 Auto process restart
 Manual recovery

 Process restart
 Node reboot
 Repair

2UUO

1D UA UR UB

UC US UTUN

2γ

(1-r)ρm

rρmqρa

eδ2

dδ1

(1-c)φ

cφ (1-q)ρa

(1-r)ρm

rρm

qρa

(1-q)ρaδm

bβm

FS

FN2D 1D2D

eδ2

(1-e)δ2

δ1

cφ

(1-c)φ eδ2 (1-e)δ2

RE
(1-b)βm

µ

bβm

RP
(1-b)βm

µ

1D2NMD
δ1

cφ

(1-c)φ

1N

2N

eδ2
(1-d)δ1

(1-e)δ2

(1-d)δ1

dδ1

(1-e)δ2

(WebSphere) Application server (with escalated levels of recovery)

Delay and imperfect coverage in each step of detection/recovery modeled

Effect of Redundancy on Reliability

 Consider a single component with
 Reliability:
 MTTF = 1/λ

 A reliability model will have one or more absorbing states
 An availability model will have no absorbing states

 Using two redundant components
 Reliability: 𝑅𝑅 𝑡𝑡 = 2𝑒𝑒−λ𝑡𝑡 - 𝑒𝑒−2λ𝑡𝑡

 MTTF = 1.5/λ

90

tetR λ−=)(

λ2 λ

2 1 0

1 0

λ

Copyright © 2021 by K.S. Trivedi 91

 Assume that the initial state of the Markov chain is 2,
that is, π2(0) = 1, πk (0) = 0 for k = 0, 1.

 Then the system of differential Equations is written
based on:

Rate of buildup = Rate of flow in - Rate of flow out
for each state

Effect of Redundancy and Repair on Reliability

Copyright © 2021 by K.S. Trivedi 92

where

)(2)(1)(
1221

2

0

12

αααα
λπ

αα tt eettR
−−

−
−

=−=

2
6)3(

,
22

21
µλµλµλ

αα
+++

=
+
−

Markov Reliability Model With Repair (Contd.)

2
2

2
1

21
2

2
1

2
221

2)(2112
αα

ααλ
αααα

λ +
=

−

−
=MTTF

222

2

22
3

)2(
)3(2

λ
µ

λλ
µλλ

+=
+

=

Reliability vs. t

Copyright © 2021 by K.S. Trivedi 93

A Practical Example

 It was observed that the MTTF of a single disk is 6
years

 So, redundancy alone (with one hot spare) will
yield an MTTF of 9 years

 Mean disk repair time is 5 hours
 Redundancy with repair will yield an MTTF of

31,545 years!
 Estimated value based on data was found to be

1,300 years
 How do we explain?

Copyright © 2021 by K.S. Trivedi 94

Copyright © 2021 by K.S. Trivedi 95

Markov Model With Imperfect Coverage
(Contd.)

c

Copyright © 2021 by K.S. Trivedi 96

 After solving the differential equations, we obtain:
R(t)=π2(t) + π1(t)

 From R(t), we can system MTTF:

 It should be clear that the system MTTF and system

reliability are critically dependent on the coverage factor

)]1([2
)21(

c
cMTTF

−+
++

=
µλλ

µλ

Markov Reliability Model With Imperfect Coverage

A Practical Example
 It was observed that the MTTF of a single disk is 6

years
 So, redundancy alone (with one hot spare) will

yield an MTTF of 9 years
 Mean disk repair time is 5 hours
 Redundancy with repair will yield an MTTF of

31,545 years!
 Estimated value based on data was found to be

1,300 years
 The equation in the last slide explains if we use

c=0.9978
Copyright © 2021 by K.S. Trivedi 97

CTMC with Infinitesimal Generator matrix Q
 Efficient/Scalable algorithms are known & are

implemented in software packages SHARPE, SPNP for:
 Steady-state behavior:

 Transient behavior:

 Cumulative Transient behavior:

 Derivatives of the probabilities with respect to
parameters – parametric sensitivity functions computed

98

1,0 == ∑
i

iQ ππ

)0(,)()(πππ givenQt
dt

td
=

dL(t)/dt = L(t) Q + π (0)
L(t): integrals of state probability vector

State-Space methods taxonomy

Can relax the assumption of exponential distributions

(discrete) State space
models

Markovian models

non-Markovian models

discrete-time Markov chains (DTMC)

continuous-time Markov chains (CTMC)

Markov reward models (MRM)

Semi-Markov process (SMP)

Markov regenerative process

Non-Homogeneous Markov

Phase-Type Expansion

99

Should I Use Markov (CTMC) Models?

+ Model Fault-Tolerance and Recovery/Repair

+ Model Dependencies

+ Model Contention for Resources and concurrency (performance)

+ Generalize to Markov Reward Models for Degradable systems

+ Can relax exponential assumption – SMP, MRGP, NHCTMC, PH

+ Performance, Availability, Performability, Survivability,
Resilience Modeling Possible

- Large State Space

100

Markov Models
 Modeling inter-dependence among components

 Simple model types such as RBD, Ftree, etc. do not suffice –
need to use Markov and other state space model types

 State space explosion problem

101

Problems with Markov (or State Space)
Models and their solutions
 State space explosion or the model

largeness problem or scalability problem
 Stochastic Petri nets and related formalisms

(stochastic process algebras) for ease of
specification and automated
generation/solution of underlying Markov
model ---

 This is called Largeness Tolerance

102

Scalable Model for IaaS Cloud
Availability and Downtime

Ref: Ghosh, Longo, Frattini, Russo, Trivedi,
“Scalable Analytics for IaaS Cloud Availability,”

IEEE Trans. Cloud Comput., 2014

103

Three Pools of Physical Machines (PMs)
To reduce power usage costs, physical machines
are divided into three pools [IBM Research
Cloud]

Hot pool (high performance & high power usage)
Warm pool (medium performance & power usage)
Cold pool (lowest performance & power usage)

Similar grouping of PMs is recommended by Intel*

*Source: http://www.intel.com/content/dam/www/public/us/en/documents/guides/
lenovo-think-server-smart-grid-technology-cloud-builders-guide.pdf

104

System Operation Details

For Availability model:
 PMs may fail and get repaired
A minimum number of operational hot PMs are

required for the system to function
 PMs in other pools may be temporarily assigned to the

hot pool to maintain system operation (migration)
Upon repair, PMs migrate back to their original pool
Migration creates dependence among availability

models of the three pools

105

Analytic model
 Markov model (CTMC) is too large to construct by hand.
 We use a high-level formalism of stochastic Petri net (the

flavor known as stochastic reward net (SRN))
 SRN models can be automatically converted into underlying

Markov (reward) model and solved for the measures of
interest such as DT (downtime), steady-state (instantaneous,
interval) availability, reliability, derivatives of these measures
--- all numerically by forming and solving underlying
equations

 Analytic-numeric solution as opposed to discrete-event
simulation

 Ref: Ciardo, Blakemore, Chimento, Muppala, Trivedi, “Automated generation
and analysis of Markov reward models using stochastic reward nets,” Linear
Algebra, Markov Chains, and Queueing Models, Springer, 1993

106

Stochastic Reward Net Model

107

Other High-Level Formalisms

 Many other High-level formalism (like SRN) are
available and corresponding software packages exist
(SAN, SPA, ….)

 Can generate/store/solve moderate size Markov models
 Have been extended to non-Markov and fluid

(continuous state) models [MRSPN, FSPN]
 Ref: Choi, Kulkarni, Trivedi, “Markov Regenerative Stochastic Petri Nets,”

Perform. Evaluation,1994
 Ref: Horton, Kulkarni, Nicol, Trivedi, “Fluid stochastic Petri nets: Theory,

applications, and solution techniques,” Eur. J. Oper. Res., 1998

108

SRN Model
SRN model automatically converted into CTMC (Markov Reward
Model)
However, model not scalable as state-space size is extremely large

#PMs per pool #states #non-zero matrix entries

3 10, 272 59, 560

4 67,075 453, 970

5 334,948 2, 526, 920

6 1,371,436 11, 220, 964

7 4,816,252 41, 980, 324

8 Memory overflow Memory overflow

10 - -

109

Problems with Markov (or State Space) Models and
their solutions

 State space explosion or the largeness problem
 Stochastic Petri nets and related formalisms for easy

specification and automated generation/solution of
underlying Markov model --- Largeness Tolerance

 Use hierarchical (Multilevel) model composition
 Largeness Avoidance
 e.g., Upper level : FT or RBD, lower level: Markov chains
 Many practical examples of the use of hierarchical

models exist
 Can also use state truncation

110

Analytic Modeling Taxonomy

Hierarchical composition
To avoid largeness

Analytic models

Non-state-space methods
Efficiency, simplicity

State-space methods
Dependency capture

111

State Space Explosion
 Number of components in systems can be hundreds,

nay thousands!
 Number of states in a Markov model will be a

gazillion!
 State space explosion can be avoided by decomposing

system into subsystems, modeling each subsystem
separately and then composing sub-model results
together – SHARPE facilitates this

 Use state-space methods for those subsystems that
require them, and use simple non-state-space
methods (RBD, Ftree) for the more “well-behaved”
parts of the system

112

Availability Analysis: SUN Microsystems

 Carrier-Grade High Availability Software Platform
 Model taking into account hardware component

failures, software component failures and various
types of recovery

 Hierarchical model composition – Markov chains
at the lower-level, RBD at the top level

 Ref: Trivedi, Vasireddy, Trindade, Nathan, Castro, “Modeling High
Availability Systems,” Proc. PRDC 2006.

113

Sun Microsystems – overall model hierarchy

…

114

Import Graph – SUN Model

115

In the Import graph, Nodes are submodels
Arc indicates output of a submodel as an input parameter to another submodel

High-Availability SIP System
 Real problem from IBM

 SIP: Session Initiation Protocol

 Hardware platform: IBM Blade Center

 Software platform: IBM WebSphere

 Telco customer asked IBM for models to quantify this product

 IBM asked me to lead the modeling project

 To quantify system (steady-state) availability
Ref: Trivedi, Wang, Hunt, Rindos, Smith, Vashaw, “Availability
Modeling of SIP Protocol on IBM WebSphere,” PRDC 2008

 To quantify a user-oriented metric called DPM
Ref: Trivedi, Wang & Hunt. “Computing the number of calls
dropped due to failures,” ISSRE2010

116

Architecture of SIP on IBM WebSphere

Replication
domain Nodes

1 A, D
2 A, E
3 B, F
4 B, D
5 C, E
6 C, F

AS: WebSphere Appl.
Server (WAS)

117

Architecture of SIP on IBM WebSphere

118

 Hardware configuration:
 Two BladeCenter chassis; 4 blades (nodes) on each chassis (1 chassis

would have been sufficient from the performance perspective)

 Software configuration:
 2 copies of SIP/Proxy servers (1 sufficient for performance)

 12 copies of WAS (6 sufficient for performance)

 Each WAS instance forms a redundancy pair (replication domain) with
WAS installed on another node on a different chassis

The system has both, hardware redundancy
and software redundancy

Software Redundancy
 Identical copies of SIP proxy used as backups (hot spares)

 Identical copies of WebSphere Applications Server (WAS) used as

backups (hot spares)

 Type of software redundancy – (not design diversity) but replication

of identical software copies

 Normal recovery after a software failure – uses time redundancy

 Restart software, reboot node or fail-over to a software replica; only

when all else fails, a “software repair” is invoked

SIP Application Server on IBM WebSphere

Design diversity
 Recovery block
 N-version programming
 ……

Classical Techniques

Expensive
not used much
in practice!

Design
diversity

Yet there are
stringent

requirements for
failure-free
operation

Challenge: Affordable Software Fault Tolerance

Software Fault Tolerance:

A possible answer: Environmental Diversity

Have been known to help
in dealing with hardware
transients

RQ: Do they help in dealing
with failures caused by
software bugs?

If yes, why?

Retry

Restart

Reboot!

1 2

3

121

Software Fault Tolerance: New
Thinking

Failover to an identical software replica
(that is not a diverse version)

Does it
help?

If yes,
why?

Thirty five years ago this would be considered crazy!

122

Software Fault Tolerance: New
Thinking

Software Fault Tolerance: New Thinking

Environmental Diversity as opposed to Design Diversity

Our claim is that this (retry, restart, reboot, failover to
identical software copy) may well work since failures
due to Mandelbugs are not negligible. We thus have an
affordable software fault tolerance technique that we
call Environmental Diversity
Ref: Qiu, Zheng, Trivedi, Mura, “Availability Analysis of Systems Deploying Sequences
of Environmental-Diversity-Based Recovery Methods,” IEEE-TR, 2020

Ref: Grottke, Kim, Mansharamani, Nambiar, Natella, Trivedi, “Recovery From Software
Failures Caused by Mandelbugs,” IEEE TR, 2016

Environmental
Diversity

Software fault (bug) classification

Bohrbug (BOH) := A bug that is easily isolated and
that manifests consistently under a well-defined set of
conditions, because its activation and error propagation
lack complexity.

Mandelbug := A bug whose activation depends on the
environment besides the workload. Environment refers
to other applications concurrently running, interactions
with OS and hardware

Aging related bug (ARB) := A bug that leads to the
accumulation of errors either inside the running application
or in its system-context environment, resulting in an
increased failure rate and/or degraded performance.

124
Ref: Grottke, Trivedi, “Fighting Bugs: Remove, Retry, Replicate and Rejuvenate,” IEEE Computer, 2007
Ref: Dohi, Trivedi, Avritzer, Handbook of Software Aging and Rejuvenation, WSPC, 2020

Dealing with Mandelbugs

 Failures due to Mandelbugs can be tolerated by
 Retrying failed operation, Restarting a process or Rebooting the

VM
 Failover to an identical replica

 Failures due to Aging-related bugs can be prevented/postponed by
 Software Rejuvenation
 Handbook on Software Aging and rejuvenation, Dohi, Trivedi

& Avritzer (eds.), World scientific, 2020

125

The underlying idea of Environmental diversity
 Restart an application (without fixing the bug) and it most likely works --

Why?
 because of the environment where the application is executed has

changed enough to avoid the fault activation.
The environment is understood as

 OS resources, other applications running concurrently and sharing the
same resources, interleaving of operations, concurrency, or
synchronization.

This is Fault Tolerance since we do not necessarily fix the fault; fault
caused a failure but this failure is dealt with by using time redundancy
hence the user may not experience the failure again on retry
Webinar on Nov. 16: Rethinking Software Fault ToleranceTuesday, November 16,
20218:00 AM | (UTC-07:00) Pacific Time (US & Canada) | 1 hr Join WebEx
meeting
https://ieeemeetings.webex.com/ieeemeetings/j.php?MTID=m28e49d331033e6
8d482855f8e38e2c05
Meeting number:2535 155 0625Meeting password:phK49FSWvP3

What is Environmental diversity?

126

Fault Types in Several Systems
Bug types in JPL/NASA flight software - “An empirical investigation of fault types in
space mission system software,” Grottke, Nikora, Trivedi. DSN, 2010
Bug types in Linux, MySQL, Apache AXIS, HTTPD - “Fault triggers in open-source
software: An experience report,” Cotroneo, Grottke, Natella, Pietrantuono, Trivedi.
ISSRE, 2013
Bug types in Android operating system - “An Empirical investigation of fault triggers in
Android operating system,” Qin, Zheng, Li, Qiao, Trivedi. PRDC, 2017
Bug types in Linux - “Fault Triggers in Linux Operating System: From Evolution
Perspective,” Xiao, Zheng, Yin, Trivedi. ISSRE, 2017 (all the bug reports in Linux)

Project LoC % BOH % MAN % ARB % UNK

JPL/NASA 61.4 32.1 4.4 2.1

Linux 1.31M 42.2 41.9 8.3 7.6

MySQL 453K 56.6 30.3 7.7 5.4

HTTPD 145K 81.1 10.5 7.0 1.4

AXIS 80K 92.5 3.5 4.0 0.0

Android 65.2 27.0 4.4 3.4

Linux2 55.8 31.7 7.8 4.7
127

Software Fault
Classification

Back to the Availability Model

Failures

Physical failures Software failure

Power
faults OS

Memory faults
NIC faults

Cooling
faults

Blade
faults

midplane
faults

Network
faults

CPU faults
base faults

Application

I/O (RAID) faults

WAS Proxy

112 components (hardware and software)

128

Availability model of SIP on IBM WebSphere
 Single monolithic Markov model will have extraordinarily

large number of states – we use a multi-level approach

 Subsystems modeled using Markov chains to capture dependence
within

 Fault tree used at higher levels as independence across
subsystems can be reasonably assumed

 This is an example of hierarchical composition
 A single monolithic model is not constructed/stored/solved
 Each submodel is built and solved separately and results are

propagated up to the higher-level model
 Our software package SHARPE facilitates such hierarchical

model composition
129

Availability model of SIP on IBM WebSphere

 SIP top level of the availability model

AS6

6C BSC CM1

AS5

5C BSC CM1

AS4

4B BSB CM1

AS3

3B BSB CM1

AS2

2A BSA CM1

AS1

1A BSA CM1

AS12

6F BSF CM2

AS11

3F BSF CM2

AS10

5E BSE CM2

AS9

2E BSE CM2

AS8

4D BSD CM2

AS7

1D BSD CM2

App
servers

System Failure

PX1

P1 BSG CM1

PX2

P2 BSH CM2

proxy

system

k of 12

iX: ith appserver on node X
Pi: ith proxy server
BSX: node X hardware
CMi: chassis i hardware

130

 Each subsystem’s model (hardware and
software) is solved individually and combined
for the overall system solution.

Analytical Modeling

CM

MP Cool Pwr

CM Failure

BS

Base CPUMem RAID OS
eth

eth1 eth2

nic1 nic2esw1 esw2

BS Failure

ModelingModeling

Modeling

UP DN DW
⊥OS

⊥OS

RP
⊥sp

bOS⊥OS

(1-bOS)⊥OS
DT

⊥OS

OS SW subsystem

131

CM

MP Cool Pwr

CM Failure

Chassis failure

BS

Base CPU Mem RAID OS
eth

eth1 eth2

nic1 nic2esw1 esw2

BS Failure

Blade server failure

A circle as a leaf node is a basic event
An inverted triangle is a shared event
A square indicates a submodel

Availability model of SIP on IBM WebSphere

 Availability models of a Blade Server and Common Blade Center
Hardware

132

Availability model of SIP on IBM WebSphere

 Markov Availability models of subsystems

UP U1

DN

RP

cmp⋅λmp

(1-cmp)⋅λmp

αsp

µmp

αsp

midplane model Cooling subsystem model

UP U1 RP

DN

DW
2λc

λc

αsp

µc

λc

µ2c

αsp

133

Availability model of SIP on IBM WebSphere

 Availability models of subsystems

UP U1

DN

RP DW
2cps⋅λps αsp

µps

λps

µ2ps

2(1-cps)⋅λps
αsp

λps

UP D1 RP
2λcpu αsp

µcpu

UP D1 RP
4λmem αsp

µmem

Power domain model

CPU model
memory model

Base, Switch and NIC

UP DN RP
λ αsp

µ

134

RAID model

OS model

Availability model of SIP on IBM WebSphere

 Availability models for subsystems (cont.)

UP DN DWλOS

µOS

RP
αsp

bOSβOS

(1-bOS)βOS
DT

δOS

µ2hd

UP U1 RP CP

DN

RBkp

µ_ bkp

µhd

λhd

λsp2*λhd µhd λhd_ src

λhd_ dst

DNsrc

µ2hd

UP U1 RP CP

DN

RBkp

µ_ bkp

µhd

λhd

λsp2*λhd µhd λhd_ src

λhd_ dst

DNsrc

µ2hd

UP U1 RP CP

DN

RBkp

µ_ bkp

µhd

λhd

λsp2*λhd µhd λhd_ src

λhd_ dst

DNsrc

µ2hd

UP U1 RP CP

DN

RBkp

µ_ bkp

µhd

λhd

λsp2*λhd µhd λhd_ src

λhd_ dst

DNsrc

µ2hd

UP U1 RP CP

DN

RBkp

µ_ bkp

µhd

λhd

λsp2*λhd µhd λhd_ src

λhd_ dst

DNsrc

µ2hd

UP U1 RP CP

DN

RBkp

µ_ bkp

µhd

λhd

λsp2*λhd µhd λhd_ src

λhd_ dst

DNsrc

135

Markov Availability model WebSphere AP
Server

UA UR UB
(1-r)ρm

rρm
qρa

(1-q)ρa

bβm

RE
(1-b)βm

µ

UOUP
γ eδ2

1D

eδ2dδ1

(1-e)δ2

UN

δm

1N

(1-d)δ1

(1-e)δ2

2N (1-d)δ1

(1-e)δ2

eδ2 dδ1

 Failure detection
 By WLM
 By Node Agent
 Manual detection

 Recovery
 Node Agent

 Auto process restart
 Manual recovery

 Process restart
 Node reboot
 Repair

• Application server and proxy server (with escalated levels of recovery)
• Delay and imperfect coverage in each step of recovery modeled
• Use of restart, failover to an identical replica or reboot as a method of

recovery after a software failure

136

Hierarchical Composition

CM

MP Cool Pwr

CM Failure

BS

Base CPU Mem RAID OS
eth

eth1 eth2

nic1 nic2esw1 esw2

BS Failure

UA UR UB
(1-r)ρm

rρm
qρa

(1-q)ρa

bβm

RE
(1-b)βm

µ

UOUP
γ eδ2

1D

eδ2dδ1

(1-e)δ2

UN

δm

1N

(1-d)δ1

(1-e)δ2

2N (1-d)δ1

(1-e)δ2

eδ2 dδ1

UP U1

DN

RP DW
2cps⋅λps αsp

µps

λps

µ2ps

2(1-cps)⋅λps
αsp

λps

AS6

6C BS C CM 1

AS 5

5C BS C CM 1

AS 4

4B BS B CM 1

AS 3

3B BS B CM 1

AS2

2A BS A CM 1

AS1

1A BS A CM 1

AS 12

6F BS F CM 2

AS 11

3F BS F CM 2

AS 10

5E BS E CM 2

AS9

2E BS E CM 2

AS 8

4D BS D CM 2

AS7

1D BS D CM 2

App
servers

System Failure

PX1

P1 BS G CM 1

PX 2

P2 BS H CM 2

proxy

system

k of 12 AS1

1A BSA CM1

A single monolithic Markov
model will have too many states

137

Import graph for SIP Availability Model

138

Model Parameterization
 Types of parameters

 Hardware component failure rates
 Software component failure rates
 Detection, restart, reboot, repair delays
 Imperfect coverages for each of the above recovery phases

 The parameter values obtained from
 Field data for hardware component failure rates
 High availability testing for detection/restart/reboot delays
 Agreed upon assumptions for other parameters

 Uncertainty in parameter values (assumed value or based on
limited test data)
 Sensitivity analysis w.r.t. that parameter performed

139

Pa
ra

m
et

er
s f

or
 th

e
H

ar
dw

ar
e

C
om

po
ne

nt
s

140

Pa
ra

m
et

er
s f

or
 th

e
so

ft
w

ar
e

co
m

po
ne

nt
s

141

System and subsystem downtime (min/year)

142

 Downtime at different levels of AS redundancy (k-1)
 Downtime of individual components

Availability model of SIP on IBM
WebSphere (contributions)

 Developed a very comprehensive availability model
 Hardware and software failures
 Hardware and Software failure-detection delays
 Software Failover delay
 Escalated levels of recovery

 Automated and manual restart, reboot, repair
 Imperfect coverage (detection, failover, restart, reboot)

 Many of the parameters collected from experiments, some obtained
from tables; few of them assumed

 Detailed sensitivity analysis to find bottlenecks and give feedback to
designers

 Developed a new method for calculating DPM (defects per million)
 Taking into account interaction between call flow and failure/recovery
 Retry of messages (this model will be published in the future)

 This model was responsible for the sale of the system by IBM

143

Hierarchical Composition

 Many more examples of such models can be found in
the book (Trivedi & Bobbio, Reliability and
Availability: Modeling, Analysis, Applications,
Cambridge University Press, 2017) and other papers
 Availability Models
 Reliability Models
 Performance Models
 Performability Models
 Survivability Models
 Dynamic Fault Tree Models

144

Hierarchical Models
 Main reason for hierarchical (or multilevel) models: avoid

generating/solving large monolithic models; that is, for
tractability/scalability

 In SHARPE we can mix and match different paradigms and to
arbitrary levels

 Can choose the “right” paradigm for each subsystem
 Note that some tools/approaches use hierarchy merely for

specification and a monolithic model is constructed by the tool
 We are advocating hierarchy not only for specification but also

for solution – hence, hierarchical composition
 Hierarchy does not always mean an approximation
 Most practical problems I have solved have 2 or more levels

with the top level being RBD/ftree and Markov models at the
lowest level

145

Hierarchical Composition
 Matrix-Level vs. Model-Level vs. System-Level Decomposition
 Multi-level modeling formalism -- meta-modeling language?
 What kinds of quantities to pass between sub-models?
 Exact vs. approximate solution
 If approximate, bounding/estimating errors of approximation?
 Import graph

 Acyclic
 Cyclic Fixed-point iteration

146

Analytic Methods Taxonomy

Hierarchical models
Largeness avoidance

Analytic methods

Non-state-space methods
Efficiency, simplicity

State-space models
Dependency capture

Fixed point iteration
Nearly independent

147

Scalable Model for IaaS Cloud
Availability and Downtime

Ref: Ghosh, Longo, Frattini, Russo, Trivedi,
“Scalable Analytics for IaaS Cloud Availability,”

IEEE Trans. Cloud Computing, 2014

148

Monolithic SRN Model

149

Monolithic SRN Model
Monolithic SRN model is automatically translated into CTMC or
Markov Reward Model
However the model not scalable as state-space size of this model is
extremely large

#PMs per pool #states #non-zero matrix
entries

3 10, 272 59, 560

4 67,075 453, 970

5 334,948 2, 526, 920

6 1,371,436 11, 220, 964

7 4,816,252 41, 980, 324

8 Memory overflow Memory overflow

10 - -

150

Decompose into three Sub-models

SRN sub-model for hot pool

SRN sub-model for warm pool
SRN sub-model for cold pool

151

Import graph

152

Many questions

 Existence of Fixed Point (easy): IEEE TCC
2014 (In a more general setting: Mainkar
& Trivedi paper in IEEE-TSE, 1996)

 Uniqueness (some cases)
 Rate of convergence
 Accuracy
 Scalability

153

Monolithic vs. interacting sub-models

 #states, #non-zero entries

154

Steps for system availability modeling

 List all possible component level failures (hardware, software)
 List of all failure detectors & match with failure types
 List all recovery mechanisms & match with failure types
 Allocation of software modules to hardware units
 Formulate the model
 Face validation and verification of the model
 Parameterization of the model (tables, websites, experiments)
 Solve the model (using SHARPE, SPNP or similar software

packages) to detect bottlenecks, sensitivity analysis, suggest
parameters to be monitored more accurately

 What-if analysis to suggest improvements
 Validate the model

155

Outline

 Introduction and Motivation
 Reliability and Availability Models
 Conclusions
 References

156

System Reliability/Availability Models

 Techniques & software packages are available for the
construction & solution of reliability and availability models of
real systems

 System decomposition followed by hierarchical model
composition is the typical approach

 Modeling has been used
 To compare alternative designs/architectures (Cisco)
 Find bottlenecks, answer what if questions, design optimization and

conduct trade-off studies (IBM Cloud)
 At certification time (Boeing)
 At design verification/testing time (IBM SIP)
 Configuration selection phase (DEC)
 Operational phase for system tuning/on-line control

157

System Reliability/Availability Models
 Model Types in Use

 Non-state-Space: Reliability Block Diagram, Fault tree, Reliability
graph

 State-space: Markov models & stochastic Petri nets, Semi-Markov,
Markov regenerative and non-homogeneous Markov models

 Hierarchical composition
 Top level is usually an RBD or a fault tree
 Bottom level models are usually Markov chains

 Fixed-point iterative
 Solution types

 Analytic closed-form
 Analytic numerical (using a software package)
 Simulative

 Software packages
 SHARPE or similar tools are used to construct and solve such models

 Structural as well as parametric assumptions means that numbers
produced should be taken with a grain of salt

158

Challenges in Reliability/Availability Models
 Model Largeness (in spite of: hierarchy, fixed-point

iteration, approximations) – Smartgrid models
 Dealing with non-exponential distributions (in spite of

SMP, MRGP, NHCTMC, PH)
 Service (or user)-oriented measures as opposed to

system-oriented measures
 Combining performance, power and failure/repair

 Performability, two-level models, use of Markov-reward models

 Model Parameterization
 Model Validation and Verification
 Parametric uncertainty propagation

159

Model Parameterization
 Hardware/Software Configuration parameters
 Hardware component MTTFs
 Software component MTTFs

 OS, IBM Application, customer software, third party
 Hardware/Software Failover times
 Restart/Reboot times
 Coverage (Success) probabilities

 Detection, location, restart, reconfiguration, repair
 Repair time

 Hot swap, multiple component at once, DOA (dead on arrival),
shared/not shared, field service travel time, preventive vs.
corrective

 Uncertainty propagation: Dealing with not only Aleatory (built into
the system models) but also epistemic (parametric) uncertainty

160

Message to Young Researchers
 Pick a real problem rather than one from literature

whenever possible
 There should be plenty of real problems in Industry
 Keep an open mind
 Ask questions and Listen carefully

 It is possible to write scholarly articles based on work
done on real problems

 Use software packages [e.g., SHARPE, SPNP] whenever
applicable [as opposed writing your own code to
generate and solve models]

161

Outline of the book: Reliability and
Availability Engineering

Part I – Introduction (Chapters 1:3)

Part II - Non-state-space models (Chapters 4:8)

Part III - State-space Models with Exponential
Distributions (Chapters 9:12)

Part IV - State-space Models with Non-
Exponential Distributions (Chapters 13:15)

Part V - Multi-Level Models (Chapters 16:17)

Part VI - Case Studies (Chapter 18)

162

Outline of the book: Reliability and
Availability Engineering

163

Outline

 Introduction and Motivation
 Reliability and Availability Models
 Conclusions
 References

164

Selected References
 Trivedi & Bobbio, Reliability and Availability: Modeling, Analysis, Applications, Cambridge

University Press, 2017
 Trivedi, Probability and Statistics with Reliability, Queuing, and Computer Science

Applications. John Wiley, 2nd edition, 2001; revised paperback, 2016
 Tomek & Trivedi, Fixed-Point Iteration in Availability Modeling, Informatik-Fachberichte, Dal

Cin (ed.), Springer-Verlag, Berlin, 1991
 Mainkar & Trivedi, Sufficient Conditions for Existence of a Fixed Point in Stochastic Reward

Net-Based Iterative Models, IEEE TSE, 1996
 Trivedi, Vasireddy, Trindade, Nathan, Castro, “Modeling High Availability Systems,” PRDC

2006
 Trivedi, Wang, Hunt, Rindos, Smith, Vashaw, “Availability Modeling of SIP Protocol on IBM

WebSphere,” PRDC 2008
 Smith, Trivedi, Tomek, Ackaret, Availability analysis of blade server systems, IBM Sys. J., 2008.
 Trivedi & Sahner, SHARPE at the Age of Twenty two, ACM SIGMETRICS, Performance

Evaluation Review, 2008
 Trivedi, Wang & Hunt. “Computing the number of calls dropped due to failures,” ISSRE2010
 Mishra, Trivedi & Some. "Uncertainty Analysis of the Remote Exploration and

Experimentation System", AIAA Journal of Spacecraft and Rockets, 2012
 Ghosh, Longo, Frattini, Russo & Trivedi, “Scalable Analytics for IaaS Cloud Availability”, IEEE

Trans. on Cloud Computing, 2014
 Malhotra, Trivedi, “Power-Hierarchy of Dependability -Model Types,” IEEE-TR, 1994

165

Selected References
 Grottke, Nikora, Trivedi, An empirical investigation of fault types in space

mission system software, DSN, 2010
 Cotroneo, Grottke, Natella, Pietrantuono, Trivedi, Fault triggers in open-source

software: An experience report, ISSRE, 2013
 Qin, Zheng, Li, Qiao, Trivedi, An Empirical investigation of fault triggers in

Android operating system, PRDC, 2017
 Xiao, Zheng, Yin, Trivedi, Fault Triggers in Linux Operating System: From

Evolution Perspective, ISSRE, 2017
 Ciardo, Blakemore, Chimento, Muppala, Trivedi, Automated generation and

analysis of Markov reward models using stochastic reward nets, Linear Algebra,
Markov Chains, and Queueing Models, Springer, 1993

 Qiu, Zheng, Trivedi, Mura, “Availability Analysis of Systems Deploying Sequences
of Environmental-Diversity-Based Recovery Methods,” IEEE-TR, 2020

 Grottke, Kim, Mansharamani, Nambiar, Natella, Trivedi, “Recovery From
Software Failures Caused by Mandelbugs,” IEEE TR, 2016

 Handbook on Software Aging and rejuvenation, Dohi, Trivedi & Avritzer (eds.),
World scientific, 2020

166

Thank you!

167

Contact Information and more sources

Kishor Trivedi: ktrivedi@duke.edu
www.researchgate.net/profile/Kishor_Trivedi2

168

mailto:ktrivedi@duke.edu

	Reliability and Availability of Hardware-Software systems���IFIP Performance 2021 Conference �Tutorial�November 8, 2021�
	Tutorial Objectives
	Administrative matters
	Tutorial Outline
	 Our Dependence on Technical Systems � These systems need to be highly reliable
	Need for a new term
	Dependability– An umbrella term
	Difference between reliability and availability��
	Faults, Errors, Failures
	A Classification of Faults
	Failure Classification
	Slide Number 12
	Basic Definitions
	Basic Definitions
	Basic Definitions: Reliability
	Basic Definitions: Reliability
	Mass at Origin
	Basic Definitions
	Basic Definitions
	Basic Definitions
	Basic Definitions
	Basic Definitions
	Basic Definitions
	Number of Nines– Reality Check
	Example Failures from High Tech companies
	More examples of real failures
	 More Recent Examples
	Failures & Downtime Lead to
	Need Methods
	Methods to Improve Dependability
	Methods Overview (Redundancy)
	Coding Redundancy
	Time Redundancy
	Some Notes
	Multiple Redundant Components
	Some More Notes
	Maintenance
	Some More Notes
	Need Methods
	 Quantitative Assessment methods �	for system reliability and availability
	 Quantitative Assessment approaches
	 Quantitative Assessment approaches
	Two Types of Uncertainty
	Outline
	Overview of Assessment Methods
	Analytic Methods Taxonomy
	Non-State-Space Methods : taxonomy
	Cisco & Juniper Routers
	Modeling High Availability Systems: Sun Microsystems
	Series-Parallel RBDs
	Problem 4.22 in Greenbook
	Series-Parallel RBDs
	Fault Trees
	Fault Tree Model of GE Truck- AC6000
	Fault Tree Model of GE Equipment Ventilation System
	Slide Number 56
	Software Package SHARPE
	Fault trees
	Solution time for Very Large Fault trees
	Fault Trees (Continued)
	Reliability Graph (relgraph)
	Relgraphs
	Problem 5.8 in Greenbook
	SHARPE Input file for Problem 5.8 in Greenbook
	SHARPE Output for Problem 5.8 in Greenbook
	Avionics
	Reliability Analysis of Boeing 787
	Reliability Analysis of Boeing 787
	Reliability Analysis of Boeing 787 (cont’d)
	Reliability Analysis of Boeing 787 (cont’d)
	Reliability Analysis of Boeing 787 (cont’d)
	RBD->Relgraph->ftree
	Power-hierarchy of modeling formalisms
	Non-state-space Methods (cont’d)
	State-space methods : Markov chains
	Analytic Methods Taxonomy
	Markov availability model of the cooling subsystem (IBM BladeCenter)
	Markov availability model of the power domain subsystem (IBM BladeCenter)
	Markov model of Linux OS on IBM BladeCenter
	Steady State Solution
	Availability Model of a Replication Domain with two Appservers
	Effect of Redundancy on Reliability
	Effect of Redundancy and Repair on Reliability
	Markov Reliability Model With Repair (Contd.)
	Reliability vs. t
	A Practical Example
	Markov Model With Imperfect Coverage (Contd.) 	
	Markov Reliability Model With Imperfect Coverage 	
	A Practical Example
	 CTMC with Infinitesimal Generator matrix Q
	State-Space methods taxonomy
	Should I Use Markov (CTMC) Models?
	Markov Models
	Problems with Markov (or State Space) Models and their solutions
	Slide Number 103
	Three Pools of Physical Machines (PMs)
	System Operation Details
	Analytic model
	 Stochastic Reward Net Model
	Other High-Level Formalisms
	SRN Model
	Problems with Markov (or State Space) Models and their solutions
	Analytic Modeling Taxonomy
	State Space Explosion
	Availability Analysis: SUN Microsystems �
	Sun Microsystems – overall model hierarchy
	Import Graph – SUN Model
	High-Availability SIP System
	Architecture of SIP on IBM WebSphere
	Architecture of SIP on IBM WebSphere
	SIP Application Server on IBM WebSphere
	Software Fault Tolerance:
	Software Fault Tolerance: New Thinking
	Software Fault Tolerance: New Thinking
	Software Fault Tolerance: New Thinking
	Software fault (bug) classification
			Dealing with Mandelbugs
	What is Environmental diversity?
	Fault Types in Several Systems
	 Back to the Availability Model
	Availability model of SIP on IBM WebSphere
	Availability model of SIP on IBM WebSphere
	Analytical Modeling
	Availability model of SIP on IBM WebSphere
	Availability model of SIP on IBM WebSphere
	Availability model of SIP on IBM WebSphere
	Availability model of SIP on IBM WebSphere
	Markov Availability model WebSphere AP Server
	Hierarchical Composition
	Import graph for SIP Availability Model
	Model Parameterization
	Parameters for the Hardware Components
	Parameters for the software components
	System and subsystem downtime (min/year)
	Availability model of SIP on IBM WebSphere (contributions)
	Hierarchical Composition
	Hierarchical Models
	Hierarchical Composition
	Analytic Methods Taxonomy
	Slide Number 148
	Monolithic SRN Model
	Monolithic SRN Model
	Decompose into three Sub-models
	Import graph
	 Many questions
	Monolithic vs. interacting sub-models
	 Steps for system availability modeling
	Outline
	 System Reliability/Availability Models
	System Reliability/Availability Models
	Challenges in Reliability/Availability Models
	Model Parameterization
	Message to Young Researchers
	Outline of the book: Reliability and Availability Engineering
	Outline of the book: Reliability and Availability Engineering
	Outline
	Selected References
	Selected References
	Slide Number 167
	Contact Information and more sources

