Privacy-Preserving Data Processing

In this tutorial, you will learn how to apply off-the-shelf anonymization techniques using the most popular libraries: ARX and DiffPrivLib.

Dataset
You will use a dataset reporting various details on the passengers of the Titanic in its first and only trip.

The dataset is taken from this Kaggle competition. Download it using the code we provide you and install dependencies.

curl -L https://www.dropbox.com/s/nnmcywhé6ryveit4/titanic_clean.csv?dl=1 > titanic.csv

]
! pip install --user pandas numpy scikit-learn fastplot
! pip install --user sphinx sphinx rtd theme nbsphinx pandoc pytest-cov uplink==0.9.0
! pip install --user pyarxaas --no-deps > /dev/null
! pip install --user --upgrade diffprivlib > /dev/null

% Total % Received % Xferd Average Speed Time Time Time Current

Dload Upload Total Spent Left Speed

100 141 0 141 0 0 542 0 ——t——2—= ——f——f—— ——i———— 544
100 323 100 323 0 0 487 0 ——t——2—= ——f——f—— ——i———— 487
100 64499 100 64499 0 0 63602 0 0:00:01 0:00:01 —--:——:-—= 417k

Requirement already satisfied:
Requirement already satisfied:
Requirement already satisfied:
Collecting fastplot
Downloading fastplot-1.1.0.tar.gz (10 kB)

pandas in /opt/conda/lib/python3.9/site-packages (1.3.4)
numpy in /opt/conda/lib/python3.9/site-packages (1.20.3)
scikit-learn in /opt/conda/lib/python3.9/site-packages (1.0)

Preparing metadata (setup.py) ... done
Requirement already satisfied: python-dateutil>=2.7.3 in /opt/conda/lib/python3.9/site-packages (from pandas) (2.8.2)
Requirement already satisfied: pytz>=2017.3 in /opt/conda/lib/python3.9/site-packages (from pandas) (2021.3)
Requirement already satisfied: scipy>=1.1.0 in /opt/conda/lib/python3.9/site-packages (from scikit-learn) (1.7.1)
Requirement already satisfied: threadpoolctl>=2.0.0 in /opt/conda/lib/python3.9/site-packages (from scikit-learn) (3.0.
0)
Requirement already satisfied: joblib>=0.11 in /opt/conda/lib/python3.9/site-packages (from scikit-learn) (1.1.0)
Requirement already satisfied: matplotlib in /opt/conda/lib/python3.9/site-packages (from fastplot) (3.4.3)
Requirement already satisfied: statsmodels in /opt/conda/lib/python3.9/site-packages (from fastplot) (0.13.0)
Requirement already satisfied: seaborn in /opt/conda/lib/python3.9/site-packages (from fastplot) (0.11.2)
Requirement already satisfied: six>=1.5 in /opt/conda/lib/python3.9/site-packages (from python-dateutil>=2.7.3->pandas)
(1.16.0)
Requirement already satisfied: kiwisolver>=1.0.1 in /opt/conda/lib/python3.9/site-packages (from matplotlib->fastplot)

(1.3.2)

https://arx.deidentifier.org/
https://diffprivlib.readthedocs.io/
https://www.kaggle.com/c/titanic

Requirement already satisfied: pyparsing>=2.2.1 in /opt/conda/lib/python3.9/site-packages (from matplotlib->fastplot)
(2.4.7)
Requirement already satisfied: pillow>=6.2.0 in /opt/conda/lib/python3.9/site-packages (from matplotlib->fastplot) (8.3.
2)
Requirement already satisfied: cycler>=0.10 in /opt/conda/lib/python3.9/site-packages (from matplotlib->fastplot) (0.10.
0)
Requirement already satisfied: patsy>=0.5.2 in /opt/conda/lib/python3.9/site-packages (from statsmodels->fastplot) (0.5.
2)
Building wheels for collected packages: fastplot
Building wheel for fastplot (setup.py) ... done
Created wheel for fastplot: filename=fastplot-1.1l.0-py3-none-any.whl size=5112 sha256=79ed5c70eecd442la6c6907bdeed2f53c
5b4dd6c0534ce731b758121838ed13ba
Stored in directory: /home/jovyan/.cache/pip/wheels/22/a8/da/2314af3b8flec3e262£17d24c756a5066a1£13d701294907d6
Successfully built fastplot
Installing collected packages: fastplot
Successfully installed fastplot-1.1.0
Collecting sphinx
Downloading Sphinx-4.2.0-py3-none-any.whl (3.1 MB)
| N [3.1 MB 5.4 MB/s
Collecting sphinx rtd_ theme
Downloading sphinx rtd theme-1.0.0-py2.py3-none-any.whl (2.8 MB)
| N | 2.6 MB 50.1 MB/s
Collecting nbsphinx
Downloading nbsphinx-0.8.7-py3-none-any.whl (25 kB)
Collecting pandoc
Downloading pandoc-1.1.0-py3-none-any.whl (27 kB)
Collecting pytest-cov
Downloading pytest cov-3.0.0-py3-none-any.whl (20 kB)
Collecting uplink==0.9.0
Downloading uplink-0.9.0-py2.py3-none-any.whl (95 kB)
| N | 5 kB 742 kB/s
Collecting uritemplate>=3.0.0
Downloading uritemplate-4.1.1-py2.py3-none-any.whl (10 kB)
Requirement already satisfied: requests>=2.18.0 in /opt/conda/lib/python3.9/site-packages (from uplink==0.9.0) (2.26.0)
Requirement already satisfied: six>=1.12.0 in /opt/conda/lib/python3.9/site-packages (from uplink==0.9.0) (1.16.0)
Requirement already satisfied: setuptools in /opt/conda/lib/python3.9/site-packages (from sphinx) (58.2.0)
Collecting sphinxcontrib-applehelp
Downloading sphinxcontrib_ applehelp-1.0.2-py2.py3-none-any.whl (121 kB)
| N | 121 kB 34.4 MB/s
Requirement already satisfied: packaging in /opt/conda/lib/python3.9/site-packages (from sphinx) (21.0)
Collecting sphinxcontrib-serializinghtml>=1.1.5
Downloading sphinxcontrib serializinghtml-1.1.5-py2.py3-none-any.whl (94 kB)
| N | O¢ kB 434 kB/s
Collecting alabaster<0.8,>=0.7
Downloading alabaster-0.7.12-py2.py3-none-any.whl (14 kB)

Collecting sphinxcontrib-htmlhelp>=2.0.0
Downloading sphinxcontrib_ htmlhelp-2.0.0-py2.py3-none-any.whl (100 kB)
| N | 100 kB 1.5 MB/s
Collecting snowballstemmer>=1.1
Downloading snowballstemmer-2.1.0-py2.py3-none-any.whl (93 kB)
| I | 03 kB 298 kB/s
Requirement already satisfied: Jinja2>=2.3 in /opt/conda/lib/python3.9/site-packages (from sphinx) (3.0.2)
Collecting imagesize
Downloading imagesize-1.2.0-py2.py3-none-any.whl (4.8 kB)
Collecting sphinxcontrib-devhelp
Downloading sphinxcontrib devhelp-1.0.2-py2.py3-none-any.whl (84 kB)
| I | 4 kB 149 kB/s
Requirement already satisfied: Pygments>=2.0 in /opt/conda/lib/python3.9/site-packages (from sphinx) (2.10.0)
Requirement already satisfied: babel>=1.3 in /opt/conda/lib/python3.9/site-packages (from sphinx) (2.9.1)
Collecting docutils<(0.18,>=0.14
Downloading docutils-0.17.1-py2.py3-none-any.whl (575 kB)
| I | 575 kB 45.1 MB/s
Collecting sphinxcontrib-jsmath
Downloading sphinxcontrib_ jsmath-1.0.1-py2.py3-none-any.whl (5.1 kB)
Collecting sphinxcontrib-gthelp
Downloading sphinxcontrib gthelp-1.0.3-py2.py3-none-any.whl (90 kB)
| I | 00 kB 547 kB/s
Requirement already satisfied: nbconvert!=5.4 in /opt/conda/lib/python3.9/site-packages (from nbsphinx) (6.2.0)
Requirement already satisfied: traitlets in /opt/conda/lib/python3.9/site-packages (from nbsphinx) (5.1.0)
Requirement already satisfied: nbformat in /opt/conda/lib/python3.9/site-packages (from nbsphinx) (5.1.3)
Collecting ply
Downloading ply-3.11l-py2.py3-none-any.whl (49 kB)
| I | <0 kB 608 kB/s
Collecting plumbum
Downloading plumbum-1.7.0-py2.py3-none-any.whl (116 kB)
| I | 116 kB 52.1 MB/s
Collecting pytest>=4.6
Downloading pytest-6.2.5-py3-none-any.whl (280 kB)
| I | 280 kB 49.3 MB/s
Collecting coverage[toml]>=5.2.1
Downloading coverage-6.1.1-cp39-cp39-manylinux_ 2 5 x86_ 64.manylinuxl_x86_64.manylinux 2 12 x86_64.manylinux2010_x86_6
4.whl (214 kB)
| I | 21! kB 34.8 MB/s
Requirement already satisfied: pytz>=2015.7 in /opt/conda/lib/python3.9/site-packages (from babel>=1.3->sphinx) (2021.3)
Collecting tomli
Downloading tomli-1.2.2-py3-none-any.whl (12 kB)
Requirement already satisfied: MarkupSafe>=2.0 in /opt/conda/lib/python3.9/site-packages (from Jinja2>=2.3->sphinx) (2.
0.1)
Requirement already satisfied: jupyterlab-pygments in /opt/conda/lib/python3.9/site-packages (from nbconvert!=5.4->nbsph
inx) (0.1.2)

Requirement already
Requirement already
hinx) (1.5.0)
Requirement already
0)

Requirement already
nx) (0.3)
Requirement already
7.1)

Requirement already
sphinx) (0.5.4)
Requirement already
x) (0.8.4)
Requirement already
(4.8.1)

Requirement already
x) (4.1.0)
Requirement already
2.0)

Requirement already
1.2.0)

Collecting toml

satisfied:
satisfied:

satisfied:

satisfied:

satisfied:

satisfied:

satisfied:

satisfied:

satisfied:

satisfied:

satisfied:

bleach in /opt/conda/lib/python3.9/site-packages (from nbconvert!=5.4->nbsphinx) (4.1.0)
pandocfilters>=1.4.1 in /opt/conda/lib/python3.9/site-packages (from nbconvert!=5.4->nbsp

testpath in /opt/conda/lib/python3.9/site-packages (from nbconvert!=5.4->nbsphinx) (0.5.
entrypoints>=0.2.2 in /opt/conda/lib/python3.9/site-packages (from nbconvert!=5.4->nbsphi
defusedxml in /opt/conda/lib/python3.9/site-packages (from nbconvert!=5.4->nbsphinx) (0.
nbclient<0.6.0,>=0.5.0 in /opt/conda/lib/python3.9/site-packages (from nbconvert!=5.4->nb
mistune<2,>=0.8.1 in /opt/conda/lib/python3.9/site-packages (from nbconvert!=5.4->nbsphin
jupyter-core in /opt/conda/lib/python3.9/site-packages (from nbconvert!=5.4->nbsphinx)
jsonschema!=2.5.0,>=2.4 in /opt/conda/lib/python3.9/site-packages (from nbformat->nbsphin
ipython-genutils in /opt/conda/lib/python3.9/site-packages (from nbformat->nbsphinx) (0.

attrs>=19.2.0 in /opt/conda/lib/python3.9/site-packages (from pytest>=4.6->pytest-cov) (2

Downloading toml-0.10.2-py2.py3-none-any.whl (16 kB)

Collecting py>=1.8.2

Downloading py-1.11.0-py2.py3-none-any.whl (98 kB)

Collecting pluggy<2.

0,>=0.12

| 98 kB 178 kB/s

Downloading pluggy-1.0.0-py2.py3-none-any.whl (13 kB)

Collecting iniconfig

Downloading iniconfig-1.1.1-py2.py3-none-any.whl (5.0 kB)
Requirement already satisfied: urllib3<1.27,>=1.21.1 in /opt/conda/lib/python3.9/site-packages (from requests>=2.18.0->u

plink==0.9.0) (1.26.
Requirement already
0->uplink==0.9.0) (2
Requirement already
9.0) (3.1)
Requirement already
nk==0.9.0) (2021.10.
Requirement already
7)

Requirement already

(from jsonschema!=2.5.0,>=2.4->nbformat->nbsphinx)

Requirement already

7)
satisfied:
.0.0)
satisfied:

satisfied:
8)
satisfied:

satisfied:

satisfied:

5.0->nbconvert!=5.4->nbsphinx)

Requirement already

satisfied:

charset-normalizer~=2.0.0 in /opt/conda/lib/python3.9/site-packages (from requests>=2.18.
idna<4,>=2.5 in /opt/conda/lib/python3.9/site-packages (from requests>=2.18.0->uplink==0.
certifi>=2017.4.17 in /opt/conda/lib/python3.9/site-packages (from requests>=2.18.0->upli
pyparsing>=2.0.2 in /opt/conda/lib/python3.9/site-packages (from packaging->sphinx) (2.4.
pyrsistent!=0.17.0,!=0.17.1,!=0.17.2,>=0.14.0 in /opt/conda/lib/python3.9/site-packages
(0.17.3)

jupyter-client>=6.1.5 in /opt/conda/lib/python3.9/site-packages (from nbclient<0.6.0,>=0.

(7.0.6)
nest-asyncio in /opt/conda/lib/python3.9/site-packages (from nbclient<0.6.0,>=0.5.0->nbco

nvert!=5.4->nbsphinx) (1.5.1)

Requirement already satisfied: webencodings in /opt/conda/lib/python3.9/site-packages (from bleach->nbconvert!=5.4->nbsp
hinx) (0.5.1)

Requirement already satisfied: pyzmg>=13 in /opt/conda/lib/python3.9/site-packages (from jupyter-client>=6.1.5->nbclient
<0.6.0,>=0.5.0->nbconvert!=5.4->nbsphinx) (22.3.0)

Requirement already satisfied: python-dateutil>=2.1 in /opt/conda/lib/python3.9/site-packages (from jupyter-client>=6.1.
5->nbclient<0.6.0,>=0.5.0->nbconvert!=5.4->nbsphinx) (2.8.2)

Requirement already satisfied: tornado>=4.1 in /opt/conda/lib/python3.9/site-packages (from jupyter-client>=6.1.5->nbcli
ent<0.6.0,>=0.5.0->nbconvert!=5.4->nbsphinx) (6.1)

Installing collected packages: tomli, toml, sphinxcontrib-serializinghtml, sphinxcontrib-gthelp, sphinxcontrib-jsmath, s
phinxcontrib-htmlhelp, sphinxcontrib-devhelp, sphinxcontrib-applehelp, snowballstemmer, py, pluggy, iniconfig, imagesiz
e, docutils, coverage, alabaster, uritemplate, sphinx, pytest, ply, plumbum, uplink, sphinx-rtd-theme, pytest-cov, pando
c, nbsphinx

WARNING: The scripts coverage, coverage-3.9 and coverage3 are installed in '/home/jovyan/.local/bin' which is not on P
ATH.

Consider adding this directory to PATH or, if you prefer to suppress this warning, use --no-warn-script-location.

WARNING: The scripts sphinx-apidoc, sphinx-autogen, sphinx-build and sphinx-quickstart are installed in '/home/jovya
n/.local/bin' which is not on PATH.

Consider adding this directory to PATH or, if you prefer to suppress this warning, use --no-warn-script-location.

WARNING: The scripts py.test and pytest are installed in '/home/jovyan/.local/bin' which is not on PATH.

Consider adding this directory to PATH or, if you prefer to suppress this warning, use --no-warn-script-location.
Successfully installed alabaster-0.7.12 coverage-6.1.1 docutils-0.17.1 imagesize-1.2.0 iniconfig-1.1.1 nbsphinx-0.8.7 pa
ndoc-1.1.0 pluggy-1.0.0 plumbum-1.7.0 ply-3.11 py-1.11.0 pytest-6.2.5 pytest-cov-3.0.0 snowballstemmer-2.1.0 sphinx-4.2.
0 sphinx-rtd-theme-1.0.0 sphinxcontrib-applehelp-1.0.2 sphinxcontrib-devhelp-1.0.2 sphinxcontrib-htmlhelp-2.0.0 sphinxco
ntrib-jsmath-1.0.1 sphinxcontrib-gthelp-1.0.3 sphinxcontrib-serializinghtml-1.1.5 toml-0.10.2 tomli-1.2.2 uplink-0.9.0 u
ritemplate-4.1.1

The below block makes your Kernel restart so that you have all dependencies available

import IPython
IPython.Application.instance().kernel.do_shutdown(True)

{'status': 'ok', 'restart': True}
The dataset includes a line for each passenger, and the columns describe them under various aspects:

e survival: Survival 0 = No, 1 = Yes

e pclass: Ticket class 1= "1st, 2 = 2nd, 3 = 3rd

e sex: Sex

e Age: Age in years

e sibsp: # of siblings / spouses aboard the Titanic

e parch: # of parents / children aboard the Titanic

e ticket: Ticket number

o fare: Passenger fare

e cabin: Cabin number

e embarked: Port of Embarkation C = Cherbourg, Q = Queenstown, S = Southampton
e deck: Deck number (A, B, C, D, E, F, G, T, M). M means missing

Load it in a Pandas DataFrame and inspect it using the .head() method.

import pandas as pd

titanic = pd.read_csv("titanic.csv")
titanic.head()

Passengerld Survived Pclass Name Sex Age SibSp Parch Ticket Fare Cabin Embarked Deck

(0} 1 0 3 Braund, Mr. Owen Harris male 22.0 1 0 A/5 21171 7.2500 NaN S M

1 2 1 1 Cumings, Mrs. John Bradley ¢, 010 380 1 0 PC17599 71.2833 C85 c c
(Florence Briggs Th...

- . . STON/O2.

2 3 1 3 Heikkinen, Miss. Laina female 26.0 0 0 3101282 7.9250 NaN S M

3 4 1 1 Futrelle, Mrs. Jacques Heath (Lily ¢, 010 350 1 0 113803 53.1000 C123 S c
May Peel)

4q 5 0 3 Allen, Mr. William Henry male 35.0 0 0 373450 8.0500 NaN S M

Characterize the Dataset

As a data curator, you must know the characteristics of your dataset. Thus, let's compute some statistics on the data and make some plots.

Compute the number of people, how many Survived and Dead passengers, how many Male and Female.

print ("Number of rows:", len(titanic))
print ("Number of Survived:", len(titanic[titanic["Survived"] == 1]), "Dead:", len(titanic[titanic["Survived"] == 0]))

#SOLUTION
print ("Number of Male:", len(titanic[titanic["Sex"] == "male"]), "Female:", len(titanic[titanic["Sex"] == "female"]))

Number of rows: 891
Number of Survived: 342 Dead: 549
Number of Male: 577 Female: 314

Which is the average Fare of the tickets? And the average age?

SOLUTION
print ("Average Fare:", titanic["Fare"].mean())
print("Median Age: ", titanic["Age"].median())

Average Fare: 32.2042079685746
Median Age: 26.0

Now, you can plot the empirical distribution of the age and fare values

import fastplot
¢matplotlib inline

fastplot.plot(titanic["Age"].values, None, mode="CDF", xlabel="Age").show()

SOLUTION
fastplot.plot(titanic["Fare"].values, None, mode="CDF", xlabel="Fare", xlim=(0,50)).show()

<Figure size 640x480 with 0 Axes>

1.00

0.75¢

8 0.50
S 0.

0.25¢

0.004 20 40 60 80

Age

<Figure size 640x480 with 0 Axes>

1.00
0.75}

5 0.50

o Y

0.25¢

0.004 10 20 30 0 50

Fare

Publish the Dataset using the k-Anonymity and I-Diversity

As the Data Curator of the dataset, you want to publish it while at the same time preserving the privacy of users.
You can use the k-anonymity or the [-diversity properties or the to anonymize it. To do so, use the ARX tool.

As ARX is written in Java, to use it in Python, you can use the implemantation available in the Arx As a Service library. The library offers Python
the ARX functions and uses a remote ARX server to make the computation.

To start an ARX server, the easiest way is to run:
docker run —-p 8080:8080 navikt/arxaas

on your favorite server.

We already did it for youon jitsi.polito.it . So, you canimport pyarxaas and create your ARXaaS object that communicates with the
server.

from pyarxaas import ARXaaS
arxaas = ARXaaS("http://jitsi.polito.it:8080")

Now, convert the titanic Pandas dataframe in a pyarxaas Dataset .

https://arx.deidentifier.org/
https://navikt.github.io/arxaas/

In this exercize, you want to release a dataset reporting the Fare and Age of Survived and not Survived passengers. As such, create a dataset
with these four columns.

from pyarxaas import Dataset

dataset = Dataset.from pandas(titanic[["Name", "Fare","Age", "Survived"]])

You must tell pyarxaas which columns are IDENTIFYING , QUASIIDENTIFYING , SENSITIVE and INSENSITIVE .

Fare and Age are Quasi Identifiers as can be used to re-identify a person given some domain knowledge. The Name is clearly an identifier.
Survived a sensitive attribute, but, since the k-anonymity does not consider sensitive attribute, you shall indicate it as INSENSITIVE when
passing it to the k-anonymity function of pyarxaas

from pyarxaas import AttributeType

dataset.set_attribute_ type(AttributeType.IDENTIFYING, 'Name')
dataset.set_attribute_ type(AttributeType.QUASIIDENTIFYING, 'Fare', 'Age')
dataset.set_attribute_ type(AttributeType.INSENSITIVE, 'Survived')

It is fundamental that you create hierarchy so that pyarxaas knows how to generalize attributes.
It is hard to find the correct hierarchy:

e A too fine hierarchy will make the algorithm to delete all the information to anonymize the data.
e A too coarse hierarchy will give poor information to the user of the released data.

from pyarxaas.hierarchy import IntervalHierarchyBuilder

Interval hierarchy for the age

interval based age = IntervalHierarchyBuilder()
interval based age.add_ interval(0.0, 20.0, "0-20")
interval based age.add_interval(20.0, 40.0, "20-40")
interval based age.add_interval(40.0, 60.0, "40-60")
interval based age.add_interval(60.0, 100.0, "60-100")

interval hierarchy age = arxaas.hierarchy(interval based age, list(titanic['Age'].values))
dataset.set_hierarchy('Age', interval hierarchy age)

Interval hierarchy for the Fare
SOLUTION

interval based fare = IntervalHierarchyBuilder()
interval based fare.add interval(0.0, 30.0, "<=30")
interval based fare.add interval(30.0, 60.0, "30-60")
interval based_ fare.add interval(60.0, 10000.0, ">60")

interval hierarchy fare = arxaas.hierarchy(interval based fare, list(titanic['Fare'].values))
dataset.set_hierarchy('Fare', interval_hierarchy fare)

Anonymize the dataset with the k-anonymity, with k& = 2.
How the released data look like? How much information is there in your opinion?

Try changing the hierarchies and see how the output varies.

from pyarxaas.privacy models import KAnonymity, LDiversityDistinct

kanon = KAnonymity(2)

anonymize result = arxaas.anonymize(dataset, [kanon])

titanic_kanon = anonymize result.dataset.to dataframe().sort values(["Fare","Age", "Survived"])
titanic_kanon.head()

Name Fare Age Survived

50 * 30-60 0-20 0
59 * 30-60 0-20 0
VAl * 30-60 0-20 0
86 * 30-60 0-20 0
119 * 30-60 0-20 0

Now anonymize the dataset using the [-diversity.

Note: according to the nature of the property, you must set at least an attribute as SENSITIVE , "Survived" in this case.

from pyarxaas.privacy models import KAnonymity, LDiversityDistinct

ldiv = LDiversityDistinct(1l=2, column_name="Survived")
dataset.set_attribute type(AttributeType.SENSITIVE, 'Survived')
anonymize result = arxaas.anonymize(dataset, [ldiv])

#SOLUTION
titanic_ldiv = anonymize result.dataset.to_dataframe().sort_values(["Fare", "Age",
titanic_ldiv

"Survived"])

Name Fare Age Survived

50 * 30-60 0-20 0
59 * 30-60 0-20 0
71 * 30-60 0-20 0
86 * 30-60 0-20 0
119 * 30-60 0-20 0
745 * >60 60-100 0
275 * >60 60-100 1
366 * >60 60-100 1
587 * >60 60-100 1
829 * >60 60-100 1

891 rows x 4 columns

Is there much different compared to the output with k-anonymity? Are these data useful?

To understand this, compute the average age of the Survived and Dead passenger on the original dataset and on those anonymized with the k-
anonymity or [-diversity.

Do they differ? Do they they use hierarchies differently or similarly?

Hint: as you binned the ages, consider the average age for each bin. E.g., 0-20 becomes 10.

#SOLUTION
print ("Original Dataset")
titanic.groupby("Survived")["Age"].mean().reset_index()

Original Dataset

Survived Age
0] 0 29.737705

1 1 28108684

#SOLUTION
print ("k-anonymized")
titanic_kanon["Age rebuilt"] = titanic_kanon["Age"].apply(lambda s: {"0-20":10, "20-40":30, "40-60": 50,

"60-100":80}[s
titanic_kanon.groupby("Survived")["Age rebuilt"].mean().reset_index()

k-anonymized

Survived Age_rebuilt
0] 0 32.240437

1 1 29.853801

Now, you want to release a dataset that indicates whether a passenger survived, indicating the embarkement port and class.

Use the k-anonymity, and set k = 2.

What does ARX do? What happens if you increase k? Do you need a hierarchy?

dataset = Dataset.from pandas(titanic[["Pclass","Embarked", "Survived"]])

#SOLUTION

dataset.set_attribute type(AttributeType.QUASIIDENTIFYING, 'Pclass', 'Embarked')
dataset.set_attribute type(AttributeType.INSENSITIVE, 'Survived')

kanon = KAnonymity(2)
anonymize result = arxaas.anonymize(dataset, [kanon])

titanic_kanon = anonymize result.dataset.to dataframe().sort values(["Pclass", "Embarked"

, "Survived"])
titanic_kanon

Pclass Embarked Survived
30 1 C 0

34 1 C 0

Pclass Embarked Survived

54 1 C 0
64 1 C 0
96 1 C 0
821 3 S 1
823 3 S 1
838 3 S 1
855 3 S 1
869 3 S 1

891 rows x 3 columns

Differential Privacy

Now you will use the diffprivlib IBM library for differential privacy. You will compute some differentially private aggregates from the Titanic
dataset.

First, compute the average age of passengers, both with and without differential privacy. Set € = 0.02

import diffprivlib

print ("Real Mean:", titanic["Age"].mean())
print ("Diff Priv Mean:", diffprivlib.tools.mean(titanic["Age"].values, epsilon=0.02))

Real Mean: 29.11242424242424
Diff Priv Mean: 22.48590915115323

/home/jovyan/.local/lib/python3.9/site-packages/diffprivlib/tools/utils.py:259: PrivacyLeakWarning: Bounds have not been

specified and will be calculated on the data provided. This will result in additional privacy leakage. To ensure differe

ntial privacy and no additional privacy leakage, specify bounds for each dimension.
warnings.warn("Bounds have not been specified and will be calculated on the data provided. This will

With the differential privacy, increasing € you will get more accurate (and less-privacy friendly) results.

Try to visualize it, running the mean query increasing €. You will notice how it converges towards the real value, nullifying the benefits of effect
privacy.

Note: if you plot it, use a logaritmic scale on the x axis.

epsilons = [0.005,0.01,0.02,0.05,0.1,0.2,0.5,1]
avgs = []
for eps in epsilons:
SOLUTION
avgs.append(diffprivlib.tools.mean(titanic["Age"].values, epsilon=eps, bounds=(0,100)))

fastplot.plot([("Real", ([0,epsilons[-1]],[titanic["Age"].mean(),titanic["Age"].mean()])),
("Estimated", (epsilons, avgs)) 1],
None, mode="line multi", xlim=(epsilons[0],epsilons[-1]), xscale="log",
ylim = (0,50),legend=True).show()
avgs

<Figure size 640x480 with 0 Axes>

50 3
40}
30 LN
20
10 —— Real
————— Estimated
D ——— : — : : ———r
102 10°1 10°

[51.13129084950907,
66.2408903513614,
28.601569483690945,
25.226329335051304,
35.167952415125214,
28.78388216606397,
28.802455824987913,
28.850580443491403]

Now, you want to release a differentially private histogram of the Age of the Titanic passengers. For each age group spanning 10 years (e.g., 0-
10, 10-20, 20-30, etc.)

https://diffprivlib.readthedocs.io/en/latest/modules/tools.html#diffprivlib.tools.histogram

Try different €, from 0.02 to 2. Plot the histograms and see how they vary.

Imagine you are a Data Analystist. For which € do you get results that radically differ from the original histogram (that you can obtain with

numpy)?

#h,b = diffprivlib.tools.histogram(titanic["Age"], ...)

SOLUTION

h,b = diffprivlib.tools.histogram(titanic["Age"], epsilon=0.05,bins=[0,10,20,30,40,50,60,70], bounds=(0,100))
to plot = list(zip([£"{b[i]}-{b[i+1]}" for i,v in enumerate(h)],h))

fastplot.plot(to_plot , None, mode="bars", ylabel="N", xticks rotate=30, xlabel="Age").show()

/home/jovyan/.local/lib/python3.9/site-packages/diffprivlib/utils.py:85: DiffprivlibCompatibilityWarning: Parameter 'bou
nds' is not functional in diffprivlib. Remove this parameter to suppress this warning.
warnings.warn(f"Parameter '{arg}' is not functional in diffprivlib. Remove this parameter to suppress this
/home/jovyan/.local/lib/python3.9/site-packages/diffprivlib/tools/histograms.py:130: PrivacyLeakWarning: Range parameter
has not been specified. Falling back to taking range from the data.
To ensure differential privacy, and no additional privacy leakage, the range must be specified independently of the data
(i.e., using domain knowledge).
warnings.warn("Range parameter has not been specified. Falling back to taking range from the data.\n"
<Figure size 640x480 with 0 Axes>

400
300
= 200
100

0 0O 0 O] \] 0

Age

Now, similarly, compute the 2-dimensional histogram of Age and Survived. In this way, the published data allow computing the surviving ratio

of people with different age.

Note: The Survived column can assume only 0 and 1, meaning Dead or Survived.

https://numpy.org/doc/stable/reference/generated/numpy.histogram.html
https://diffprivlib.readthedocs.io/en/latest/modules/tools.html#diffprivlib.tools.histogram2d

Compute the surviving ratio for people in separate age groups and compare it with the one you obtain in the original data. Try different € and
see the impact.

#h,x,y = diffprivlib.tools.histogram2d(titanic["Age"].values, titanic["Survived"].values, ...)
#h,x,y np.histogram2d(titanic["Age"].values, titanic["Survived"].values, ...)

SOLUTION

import numpy as np

h,x,y = diffprivlib.tools.histogram2d(titanic["Age"].values,titanic["Survived"].values,
epsilon=0.5,
bins=[[0,10,20,30,40,50,60,70], 2])

print("Differentially Private")
for i,t in enumerate(h):
print(x[i], "-", x[i+1] , int(t[1]/sum(t)*100), "&")

h,x,y = np.histogram2d(titanic["Age"].values,titanic["Survived"].values,
bins=[[0,10,20,30,40,50,60,70], 2])

print("Differentially Private")
for i,t in enumerate(h):
print(x[i], "-", x[i+1] , int(t[1]/sum(t)*100), "&")

Differentially Private
0 - 10 57 %

10 - 20 38 %
20 - 30 31 %
30 - 40 46 %
40 - 50 32 %
50 - 60 39 %

60 - 70 26 %
Differentially Private
0 - 10 61 %

10 - 20 40 %
20 - 30 31 %
30 - 40 45 %
40 - 50 35 %
50 - 60 41 %

60 - 70 28 %

/home/jovyan/.local/lib/python3.9/site-packages/diffprivlib/tools/histograms.py:227: PrivacyLeakWarning: Range parameter
has not been specified (or has missing elements). Falling back to taking range from the data.
To ensure differential privacy, and no additional privacy leakage, the range must be specified for each dimension indep

endently of the data (i.e., using domain knowledge).
warnings.warn("Range parameter has not been specified (or has missing elements). Falling back to taking

Try to implement yourself a differentially private sum. Use the Laplace mechanism. You must compute the A f (also called sensitivity).
Which is the maximum variation in the sum if you use a dataset including all people but one?

Compute the sum of the Fares.

deltaF = max(titanic["Fare"])
mech = diffprivlib.mechanisms.Laplace(epsilon=1, sensitivity=deltaF)

#SOLUTION

mech = diffprivlib.mechanisms.Laplace(epsilon=1, sensitivity=deltaF)

print ("My Differentially Private Sum of Fares is:", mech.randomise(titanic["Fare"].sum()))

print ("The DiffPrivLib Sum of Fares is:", diffprivlib.tools.sum(titanic["Fare"].values, epsilon=1))
print ("The real Sum is:", mech.randomise(titanic["Fare"].sum()))

My Differentially Private Sum of Fares is: 27854.98059175127
The DiffPrivLib Sum of Fares is: 29526.89605384991
The real Sum is: 30693.80283447178

/home/jovyan/.local/lib/python3.9/site-packages/diffprivlib/tools/utils.py:666: PrivacyLeakWarning: Bounds have not been

specified and will be calculated on the data provided. This will result in additional privacy leakage. To ensure differe

ntial privacy and no additional privacy leakage, specify bounds for each dimension.
warnings.warn("Bounds have not been specified and will be calculated on the data provided. This will

Differentially Private Machine Learning

Now, let's have a quick tour on the Differentially Private Machine Learning models available in DiffPrivLib. They are very similar to those
implemented in Scikit Learn, but they are differentially private.

We will try a simple classification problem, solving it with both traditional and differentially private classification models, and compare the

outcomes.

First, we must create a training and a test set:

from sklearn.preprocessing import OneHotEncoder
from sklearn.model selection import train test split
from sklearn.compose import ColumnTransformer

X = titanic[["Sex", "Age", "SibSp", "Parch", "Fare","Embarked", "Deck"]].values
X ColumnTransformer ([("OneHot", OneHotEncoder(),[0,5,6])], remainder="passthrough").fit transform(X)

https://diffprivlib.readthedocs.io/en/latest/modules/mechanisms.html#laplace-mechanisms
https://scikit-learn.org/

y = titanic["Survived"].values

X train, X test, y train, y_test = train test split(X, y, test size=0.33, random state=42)
Now train a standard scikit learn Random Forest Classifier, and evaluate the performance.

A RandomForestClassifier hasthe fit() and predict() methods, while you can evaluate performance with the classifaction report.

from sklearn.ensemble import RandomForestClassifier
from sklearn.metrics import classification_report

clf = RandomForestClassifier(n_estimators=10)
#SOLUTION

clf.fit(X_train,y_ train)

y_test pred = clf.predict(X_test)

original fl = classification report(y_test, y_test pred, output_dict=True)['macro avg']['fl-score']
print(classification report(y_test, y test pred))

precision recall fl-score support

0 0.81 0.83 0.82 175

1 0.74 0.71 0.72 120

accuracy 0.78 295
macro avg 0.77 0.77 0.77 295
weighted avg 0.78 0.78 0.78 295

Now use the differentially private RandomForestClassifier present in DiffPrivLib and evaluate its performance.

clf = diffprivlib.models.RandomForestClassifier(n_estimators=10, n_jobs=-1, epsilon=1)
#SOLUTION

clf.fit(X_train,y_ train)

y_test pred = clf.predict(X_test)

print(classification report(y_test, y test pred))

/home/jovyan/.local/lib/python3.9/site-packages/diffprivlib/models/forest.py:189: PrivacyLeakWarning: ~feature domains"
parameter hasn't been specified, so falling back to determining domains from the data.

https://scikit-learn.org/stable/modules/generated/sklearn.metrics.classification_report.html
https://diffprivlib.readthedocs.io/en/latest/modules/models.html#diffprivlib.models.RandomForestClassifier

This may result in additional privacy leakage. To ensure differential privacy with no additional privacy loss, specify ~
feature domains” according to the documentation
warnings.warn(

precision recall fl-score support

0 0.70 0.91 0.79 175

1 0.78 0.43 0.56 120

accuracy 0.72 295
macro avg 0.74 0.67 0.68 295
weighted avg 0.73 0.72 0.70 295

Finally, plot how the F1-Score varies with different €.

Notice the trade-off between € and performance.

epsilons = [0.01,0.02,0.05,0.1,0.2,0.5,1,2,5,10]
#SOLUTION
fls = []
for epsilon in epsilons:
clf = diffprivlib.models.RandomForestClassifier(n_estimators=10, n_Jjobs=-1, epsilon=epsilon)
clf.fit(X_train,y train)
y_test pred = clf.predict(X_test)
fls.append(classification report(y_test, y_ test pred, output dict=True)['macro avg']['fl-score'])

/home/jovyan/.local/lib/python3.9/site-packages/diffprivlib/models/forest.py:189: PrivacyLeakWarning: ~feature domains"
parameter hasn't been specified, so falling back to determining domains from the data.
This may result in additional privacy leakage. To ensure differential privacy with no additional privacy loss, specify ~
feature domains” according to the documentation

warnings.warn (
/home/jovyan/.local/lib/python3.9/site-packages/diffprivlib/models/forest.py:189: PrivacyLeakWarning: ~feature domains"
parameter hasn't been specified, so falling back to determining domains from the data.
This may result in additional privacy leakage. To ensure differential privacy with no additional privacy loss, specify ~
feature domains” according to the documentation

warnings.warn (
/home/jovyan/.local/lib/python3.9/site-packages/diffprivlib/models/forest.py:189: PrivacyLeakWarning: ~feature domains"
parameter hasn't been specified, so falling back to determining domains from the data.
This may result in additional privacy leakage. To ensure differential privacy with no additional privacy loss, specify ~
feature domains” according to the documentation

warnings.warn(
/home/jovyan/.local/lib/python3.9/site-packages/diffprivlib/models/forest.py:189: PrivacyLeakWarning: ~feature domains"
parameter hasn't been specified, so falling back to determining domains from the data.

This may result in additional privacy leakage. To ensure differential privacy with no additional privacy loss, specify ~
feature domains” according to the documentation

warnings.warn(
/home/jovyan/.local/lib/python3.9/site-packages/diffprivlib/models/forest.py:189: PrivacyLeakWarning: ~feature domains"
parameter hasn't been specified, so falling back to determining domains from the data.
This may result in additional privacy leakage. To ensure differential privacy with no additional privacy loss, specify °
feature domains” according to the documentation

warnings.warn(
/home/jovyan/.local/lib/python3.9/site-packages/diffprivlib/models/forest.py:189: PrivacyLeakWarning: ~feature domains"
parameter hasn't been specified, so falling back to determining domains from the data.
This may result in additional privacy leakage. To ensure differential privacy with no additional privacy loss, specify °
feature domains” according to the documentation

warnings.warn(
/home/jovyan/.local/lib/python3.9/site-packages/diffprivlib/models/forest.py:189: PrivacyLeakWarning: ~feature domains"
parameter hasn't been specified, so falling back to determining domains from the data.
This may result in additional privacy leakage. To ensure differential privacy with no additional privacy loss, specify ~
feature domains” according to the documentation

warnings.warn(
/home/jovyan/.local/lib/python3.9/site-packages/diffprivlib/models/forest.py:189: PrivacyLeakWarning: ~feature domains"
parameter hasn't been specified, so falling back to determining domains from the data.
This may result in additional privacy leakage. To ensure differential privacy with no additional privacy loss, specify °
feature domains” according to the documentation

warnings.warn(
/home/jovyan/.local/lib/python3.9/site-packages/diffprivlib/models/forest.py:189: PrivacyLeakWarning: ~feature domains"
parameter hasn't been specified, so falling back to determining domains from the data.
This may result in additional privacy leakage. To ensure differential privacy with no additional privacy loss, specify ~
feature domains” according to the documentation

warnings.warn(
/home/jovyan/.local/lib/python3.9/site-packages/diffprivlib/models/forest.py:189: PrivacyLeakWarning: ~feature domains"
parameter hasn't been specified, so falling back to determining domains from the data.
This may result in additional privacy leakage. To ensure differential privacy with no additional privacy loss, specify °
feature domains” according to the documentation

warnings.warn(

to _plot = [("Original", (epsilons, [original f1l]* len (epsilons))),
("Differentially Private", (epsilons, fls))
1

fastplot.plot(to_plot, None, mode="line multi", xscale = "log", ylim = (0,1),
xlabel="$\\epsilon$", ylabel = "Fl-Score",
cycler=fastplot.CYCLER_LINESPOINTS, legend=True).show()

<Figure size 640x480 with 0 Axes>

1.00
g 07— g
5 - A
‘E 0.50 L ot o
o .
g5l —* Drlglnal _ |

--m-- Differentially Private
0.00

102 10 10° 10!

