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Mobility in network

Understanding the entities mobility patterns plays a fundamental role in
the design, management, and performance of applications and services

Source: https://www.urban-hub.com/pt-br/smart-mobility/ 2




Mobility in network

Adapted from:
. https://ocw.mit.edu/courses/civil-and-environmental-engineering/1-022-introd
Source: https://www.urban-hub.com/pt-br/smart-mobility/ uction-to-network-models-fall-2018/lecture-notes/MIT1_022F 18_lec4.pdf




Mobility in network

Adapted from:
. https://ocw.mit.edu/courses/civil-and-environmental-engineering/1-022-introd
Source: https://www.urban-hub.com/pt-br/smart-mobility/ uction-to-network-models-fall-2018/lecture-notes/MIT1_022F 18_lec4.pdf

Many solutions were proposed based on topological measures




Motivation

Each measure provides a distinct notion of importance for a node!

. Highest degree
Highest ) Highest @ centrality
eigenvector etweenpess
centrality centrality m

Highest closeness
centrality

Adapted from: https://ocw.mit.edu/courses/civil-and-environmental-engineering/1-022-introduction-to-network-models-fall-2018/lecture-notes/MIT1_022F 18 _lec4.pdf




Motivation

Each measure provides a distinct notion of importance for a node!

Highest degree

Highest ) Highest @ centrality
eigenvector etweenpess
centrality centrality m

Highest closeness
centrality

Adapted from: https://ocw.mit.edu/courses/civil-and-environmental-engineering/1-022-introduction-to-network-models-fall-2018/lecture-notes/MIT1_022F 18 _lec4.pdf

They cannot generalize the nodes' importance criteria!




Our Goal

Propose a node embedding-based methodology to model and
analyze the mobility pattern over spatial and temporal
dimensions




Our Goal

Propose a node embedding-based methodology to model and
analyze the mobility pattern over spatial and temporal
dimensions

Focus is to capture the nodes’ mobility and importance for
connectivity using the network topology and its temporal evolution
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DynamicNode2Vec

ForeachGa, , it performs a sampling using a biased random walker:

—>BFS
—>DFS

Source: Node2vec: Scalable Feature Learning for Networks. A. Grover, J. Leskovec.
ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD), 2016.
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DynamicNode2Vec

ForeachGa, , it performs a sampling using a biased random walker:

S1 S2 S3 S4 S5 S6 S7 S8 S9

—>BFS
—>DFS

Source: Node2vec: Scalable Feature Learning for Networks. A. Grover, J. Leskovec.
ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD), 2016.
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DynamicNode2Vec

ForeachGa, , it performs a sampling using a biased random walker:

S1 S2 S3 S4 S5 S6 S7 S8 S9

S1|0(15(14| 7|7 |1 2]|0]| 2] 2
S2 012|118 6 |1 | 1|2 |1
—>BFS —_— s3 o|18[17]15] 4|56
S4 0|13( 8| 3| 2|7
—>»DFS S5 o [13[10]11]19
S6 015|117 |20
S7 0|16 |17
Source: Node2vec: Scalable Feature Learning for Networks. A. Grover, J. Leskovec. S8 0|15
ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD), 2016. s9 0

Intuition: The greater the co-occurrence between two nodes, the closer they
are in the network, and the more important is the connection between them

Use the co-occurrences to produce a sequence of time-aligned embeddings14



DynamicNode2Vec: The temporal embeddings
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DynamicNode2Vec: The temporal embeddings
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DynamicNode2Vec: The temporal embeddings
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Allow tracking to what extent nodes change their connections over time!
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Methodology
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Low-dimensional

Dataset Network Model ) Patterns Extraction
representation
- - =
7
e O / )
V |
O Q
A A
asa - 1 ) - ;
2sa ... [, - = .
Q O
® O O tn O O tn O
e o o -
-ee \ 2 A, o O;O
Time \
o - N feel
~
~

18



Extracting temporal mobility patterns

Cosine distance: Quantifies the node connection changes between two
distinct time windows

e \Values close to O indicate that the node keeps its connections to the
same nodes in the two compared time windows while 1 is the opposite

Vector norm: By design, the more a node appears in the sampled paths in
a given time window, the greater is the norm of its vector

e Indicates the node's importance to network connectivity

19




Case Study

Group Regularity Mobility Model:

e Based onthe dynamics and regularity of social meetings

o Considers cyclical and sporadic meetings

e Generate synthetic traces with real properties
Our dataset:

e 100users
e Covering aperiod of 87 days
e Daily time windows
Nunes, Ivan O., et al. "GRM: Group regularity mobility model."

Proceedings of the 20th ACM International Conference on Modelling, Analysis and Simulation of Wireless and Mobile Systems. 2017 .




To what extent do nodes change their connections?
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Avg. of cosine distance per node (x)

Nodes with different levels of mobility
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To what extent do nodes change their connections?
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Avg. of cosine distance per node (x) CV of Cosine Distance per Node (x)

High CV indicates that these changes tend to be irregular
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To what extent do nodes change their connections?
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To what extent do nodes change their connections?
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How important are the connections established by them?

0.0 : i i
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Avg. of Vector Norm per Node (X)

Nodes with different levels of importance
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How important are the connections established by them?
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High variation around the average suggests that nodes have
temporary importance e
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How important are the connections established by them?
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How important are the connections established by them?
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How important are the connections established by them?

% .-b- v :

Node
Relative Deviation (Node Vector Norm)

Vector norm of a node representation (normalized z-score) 0
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nodes of similar
importance in the same
days

Relative Deviation (Node Vector Norm)
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Node

Relative Deviation (Node Vector Norm)
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Groups of nodes have momentary connectivity importance




What about topological measurements?

Embedding Topological Correlation
Avg. of Cosine Distance Avg. of Degree -0.64
Avg. of Cosine Distance Avg. of Betweenness -0.69
Avg. of Cosine Distance Avg. of Closeness -0.64
Avg. of Cosine Distance Avg. of Eigenvector -0.65
Avg. of Cosine Distance Avg. of Clustering Coefficient 0.51
Avg. of Vector Norm Avg. of Degree 0.33
Avg. of Vector Norm Avg. of Betweenness 0.50
Avg. of Vector Norm Avg. of Closeness 0.28
Avg. of Vector Norm Avg. of Eigenvector 0.32
Avg. of Vector Norm Avg. of Clustering Coefficient -0.55
33



What about topological measurements?

Embedding Topological Correlation
Avg. of Cosine Distance Avg. of Degree -0.64
Avg. of Cosine Distance Avg. of Betweenness -0.69
Avg. of Cosine Distance Avg. of Closeness -0.64
Avg. of Cosine Distance Avg. of Eigenvector -0.65
Avg. of Cosine Distance Avg. of Clustering Coefficient - 0.1
Avg. of Vector Norm Avg. of Degree 0.33
Avg. of Vector Norm Avg. of Betweenness 0.50
Avg. of Vector Norm Avg. of Closeness 0.28
Avg. of Vector Norm Avg. of Eigenvector 0.32
Avg. of Vector Norm Avg. of Clustering Coefficient -0.55

They suggest that the more dynamic a node is, the lower its centrality
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What about topological measurements?

Embedding Topological Correlation
Avg. of Cosine Distance Avg. of Degree -0.64
Avg. of Cosine Distance Avg. of Betweenness -0.69
Avg. of Cosine Distance Avg. of Closeness -0.64
Avg. of Cosine Distance Avg. of Eigenvector -0.65
Avg. of Cosine Distance Avg. of Clustering Coefficient 0.51
Avg. of Vector Norm Avg. of Degree 0.33
Avg. of Vector Norm Avg. of Betweenness 0.50
Avg. of Vector Norm Avg. of Closeness 0.28
Avg. of Vector Norm Avg. of Eigenvector 0.32
Avg. of Vector Norm Avg. of Clustering Coefficient -0.55

Centrality measurements are not capable of generalizing the

connectivity importance
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Conclusions and Future Work
Our approach offers an alternative notion of connectivity importance

Allow for tracking connectivity importance while the connections in the
network evolve over time

Suggest that topological network measures could not generalize the
patterns of connectivity captured here
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Conclusions and Future Work

Our approach offers an alternative notion of connectivity importance

Allow for tracking connectivity importance while the connections in the
network evolve over time

Suggest that topological network measures could not generalize the
patterns of connectivity captured here

As future work:

e Incorporate it into solutions for dissemination/collection of information in
mobile networks

o Evaluate the performance of such protocols comparing purely
topological measures to those proposed here
37




Thanks!

E-mail: chgferreira@ufop.edu.br



