

Departament d'Arquitectura de Computadors

Unveiling the potential of Graph Neural Networks for robust Intrusion Detection

David Pujol-Perich, José Suárez-Varela, Albert Cabellos-Aparicio, Pere Barlet-Ros

Barcelona Neural Networking Center Universitat Politècnica de Catalunya (UPC)

Motivation

- In recent years the amount of cyberattacks has increased dramatically
- They have a major negative impact in the economy. Concretely, up to \$109 billions yearly in the US alone
- They cause frequent data breaches that threatens hundreds of millions of user's privacy

Total Malware Infection Growth Rate (In Millions)

Statistics extracted from 2021 Cyber Security Statistics

Intrusion detection systems (IDS)

- A great deal of literature has focused on creating Intrusion Detection systems (IDS)
- IDS attempt to detect the malware traffic meanwhile preserving the benign
- This is thus a classification task of the incoming traffic

Traditional IDS

- State-of-the-art IDS are often based on traditional ML methods (e.g., MLP, SVM, RF, KNN)
- Many IDS over-simplify the problem by considering each of the flows independently
 - These solutions often assume that there are no multi-flow attacks (e.g., DDoS)

Limitations of traditional IDS

This assumption is often not reasonable

Is it a PortScan attack or a normal traffic?

Impossible to say

Graph-based IDS

- An IDS may benefit from processing multiple flows simultaniously. Specially for multi-flow attacks (e.g., DDoS)
- To this end, we can model the incoming traffic as a **graph**:
 - Create attack-characteristic patterns (different attacks have different graphs)
 - These patterns are **invariant** to specific connection features
 - These are more **robust** to network changes or adversarial attacks

Graph-based IDS

- Traditional ANN can not handle well graph-structured data
- **Graph Neural Networks** adapt perfectly to this setting:
 - They are dynamically assembled based on the input
 - Support different number of nodes and edges
 - Generalize well to unseen graphs
- They have already shown promising results in other fields (e.g., Computer Networks, Power Networks)

Graph Neural Networks

- Multiple GNN variants
 - Graph Convolutional NN, Gated Graph Sequence NN, Graph Attention Networks, Message Passing NN, etc.
- Basic idea
 - Model relational patterns of graph elements (instead of modeling the whole graph)
 - Set of NNs connected according to the input graph

Message Passing Neural Networks

Message

$$m_v^{t+1} = \sum_w M_t(h_v^t, h_w^t, e_{vw})$$

• Update

$$h_v^{t+1} = U_t(h_v^t, m_v^{t+1}), \quad h_v^0 = x_v$$

Readout

$$\hat{y} = R(h), \quad h = \sum_{i} h_{i}$$

J. Gilmer, S. S. Schoenholz, P. F. Riley, O. Vinyals, and G. E. Dahl. *Neural Message Passing for Quantum Chemistry*, Proc. of ICML, Sydney, Australia, Aug. 2017.

Single Message Passing

Our proposed GNN-based IDS

Traffic modeling: *Host-Connection graph*

- Connections in a network can be seen as a graph
- We propose the use of the *Host-Connection graph:*
 - Define each of the hosts and each of the connections as a node in the graph
 - We connect them according to the incoming traffic
- This modeling can be practical for many other Cybersecurity problems

						f1
Flow	Src IP	Dst IP	Feat 1	Feat d		
f1	192.143.1.1	192.168.1.1			192.143.1.1	f2
f2	192,158,3,4	192,168,1,2			\sim /	
	10211001011					
f3	192.158.3.4	192.168.1.1				
					192.158.3.4	* f3 /

GNN-architecture

- We can train a standard MP architecture that learns by exchanging between the nodes
- Use the resulting embeddings of the flows to make the final prediction

• Results obtained using IDS 2017 dataset

Class label	MLP	AdaBoost	\mathbf{RF}	ID3	Our proposal
Benign	0.67	0.68	0.99	0.99	0.99
SSH-Patator	0.0	0.0	0.99	0.99	0.98
FTP-Patator	0.0	0.0	0.99	0.99	0.99
DoS GoldenEye	0.12	0.0	0.97	0.96	0.99
DosHulk	0.63	0.63	0.99	0.99	0.99
DoS slowloris	0.02	0.0	0.99	0.99	0.98
DoS Slowhttptest	0.01	0.0	0.98	0.98	0.97
DDoS	0.51	0.0	0.99	0.99	0.99
Web-Brute Force	0.0	0.0	0.82	0.76	0.73
Web-XSS	0.0	0.0	0.69	0.65	0.83
Bot	0.0	0.0	0.98	0.98	0.98
Port Scan	0.78	0.0	0.99	0.99	0.99

Robustness against adversarial attacks

- We tested the robustness of the models with two simple adversarial attacks:
 - Increase the packet size (bytes)
 - Increase the IAT (second)

Conclusions

- Modeling the incoming traffic as graphs presents critical advantatges with respect to more naive approaches
- Our GNN-based IDS captures estructural properties of the attacks, instead of focusing only on their features
- Our proposed IDS:
 - Performs similarly to the SOTA solutions
 - It is much more robust than SOTA solutions to adversarial attacks.

Interesting resources...

- IGNNITION is a framework for fast prototyping of GNNs
 - Provides support of cybersecurity applications and more (e.g., networking)
 - Develop your GNN without using TensorFlow/PyTorch...

https://ignnition.net

Graph Neural Networking Challenge 2021 Creating a Scalable Network Digital Twin

 We have organized two GNN Challenges in 2020 and 2021 with hundreds of participants along with ITU.

https://bnn.upc.edu/challenge/gnnet2021/