Correlation-Aware Flow Consolidation for Load Balancing and Beyond

Shiva Ketabi^{*}, Matthew Buckley^{*}, Parsa Pazhooheshy^{*}, Faraz Farahvash⁺, Yashar Ganjali^{*}

*University of Toronto, *Sharif University of Technology

November 12, 2021

Motivation: Load Balancing Challenge

- Modern topologies offer several equal-cost paths:
 - Load balancing is a critical component
- Existing schemes:
 - Random and congestion-oblivious:
 - Packet-based: ECMP. Flowlet: Presto, Let it flow, ...
 - Congestion-aware:
 - Local: Drill, Global: Conga, Hula, Clove, ...
- Challenge:
 - **Volatile nature of flows:** Fluctuations in rates lead to under/overshooting of link capacities.
 - Existing schemes are random or rely on average measurements.
 - None of them consider second degree variations in flow rates!

Motivation: Correlation-Aware Flow Consolidation

- Goal: Minimizing collective rate variations.
- Aggregating inversely correlated or independent flows into *"superflows"*.
- Feeding load balancing schemes with "superflows".
- Enhancing existing load balancing schemes:
 - Reducing peak requirements.
 - Estimating future group demands with higher confidence.
 - Eliminating congestion in time-slots smaller than control intervals.

Example: Flow Consolidation

Group rates over time

Formulation: Flow Consolidation Problem

N flows $\mathcal{F} = \{f_1, \dots, f_N\}$ $\mathcal{G} = \{g_1, \dots, g_K\}$ Group : $\mathcal{F} \to \{1, \dots, K\}$ Group $(f_i) = k$ implies that $f_i \in g_k$

We formulate an optimization problem that minimizes the maximum of the aggregate rates among all the possible grouping functions.

Formulation: Correlation-Aware Flow Consolidation

- The well-known *multi-processor scheduling* problem reduces to it.
- Computational complexity: **NP-hard**.
 - Solution: we use *variance* of aggregated rate instead of maximum.
 - To control the variance of group rates, we focus on *flow correlations*.
 - Intuition: aggregation of independent (inversely-correlated) flows shows less variance over time.
- Practical challenge: individual flow rates are not available a priori.
 - Solution: to estimate flow correlations, we use the flow rates of the previous epoch to predict the future flow rates.

Solution: System

Solution: Correlation-Aware heuristic

• Lowest Correlation Grouping (LCG):

- 1. Initializing K empty groups $g_1, g_2, ..., g_k$.
- 2. Maintaining a total aggregate flow, S_k.
- 3. For each flow f:

4. Compute the correlation between f and S_k for all non-empty groups.

5. Find the minimum correlation, c*, and the corresponding group, g*.

6. Comparing c* to a threshold, if smaller assign f to g*.

7. Otherwise, assign to the next empty group.

Solution: Prediction Component

Evaluation: Setup

• Traffic:

• A real ISP data (W. N. R. Group. WAND, ISPDSL II dataset. https://wand.net.nz/wits/ispdsl/2/.)

• 500 flows for half an hour

- Flows are randomly passed through 30 paths
- T_{epoch} is 5 seconds
- Long-lived flows: active in at least in 1 time slot of previous epoch
- Short-lived flows: only active in current epoch, randomly grouped

• Comparables:

- **LCG**: Lowest Correlation Grouping
- **HRF**: Highest Rate First
- Random
- Comparables:
 - Mean and max group standard deviations

Evaluation: Predictive Models Importance

- LCG using current epoch outperforms random and HRF.
- LCG using previous epoch does not perform well at the tail.
- LCG with Ridge Regression reduces standard deviation by 33% at the 50th percentile, and 12.5% at the 99th percentile.

Evaluation: Number of Groups

- LCG outperforms random more apparently as the number of groups increases.
- LCG with ridge regression outperforms oracle-based HRF.

Conclusion and Future Work

- The first solution for load balancing that:
 - Considers **flow rate variations** and **correlations**.
 - Consolidates inversely correlated or independent flows.
 - Reduces rate fluctuations in superflows.
- Our design includes:
 - A correlation-aware heuristic for the NP-hard problem.
 - A prediction component to resolve the issue of unknown future rates.
- Our experiments show:
 - Significant reduction in standard deviation of group rates.
 - The importance of the prediction component.
- Future work: evaluation of load schemes+our solution, other applications.

