SAMSUNG

Improving accuracy and adaptability of SSD failure prediction in hyper-scale data centers

Wenwen Hao

2021 SRCX

Samsung R&D Institute China Xi'an(SRCX) established in 2013 and located in Xi'an High-tech Zone, is the only cutting-edge technology R&D institute of Samsung Electronics in western China.

SAMSUNG

01. Introduction

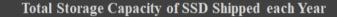
- **02.** SSD Failure Analysis
- 03. Method
- 04. Result and Analysis
- **05.** Conclusion

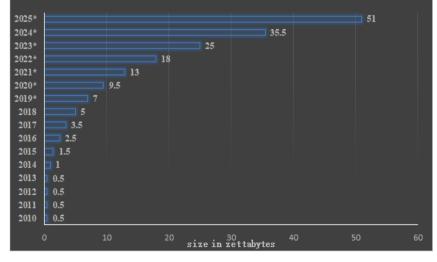
Contents

Introduction

Continuous increasing in SSD population, capacity and density

Decreasing in SSD reliability





SSD reliability: endurance, retention

DC Availability: downtime or even data loss

Introduction

Reactive Fault Tolerance Methods

- Aim to help applications recover from SSD failures
- Problem: Unable to replace failed drives in time.

Proactive Failure Prediction Methods

- Failure prediction methods for HDDs
 - ✓ Not applicable to SSDs due to fundamental difference in architecture
- Failure prediction research on SSDs
 - ✓ Research on SSD failure in controlled environment
 - ✓ Study the effect of correlated factor on SSD reliability
 - ✓ Employ ML method to make failure prediction

Introduction

Major Challenges in SSD Failure Prediction

- Data imbalance problem
- Weak correlation between SMART attributes and SSD failures
- Variation of SMART attributes distribution

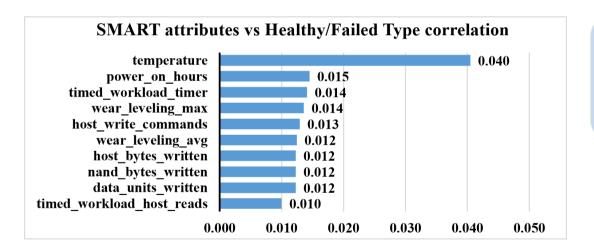
ImbalanceWeak
correlationDistribution
variation

Data

SAMSUNG Confidentia

Correlation Analysis

Reveal a weak correlation between SMART attributes and SSD failures



Correlation coefficient of the top 10 most indicative SMART attributes is close to zero

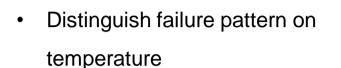
• Need further analysis on time series dependency

Time Series Analysis (SSD Drop)

- Distinguish failure pattern on WAF
 - ✓ Healthy SSD: Keep at a stable

value

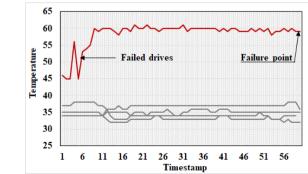
✓ Failed SSD: Increase sharply

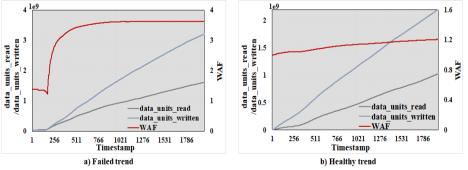


✓ Healthy SSD: Keep at relative low level

SAMSUNG Confidential

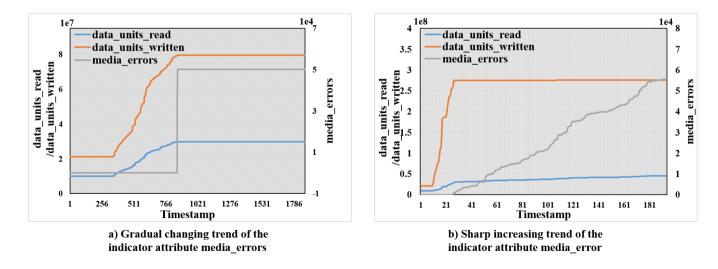
✓ Failed SSD: Increase sharply





Time Series Analysis (Media Error)

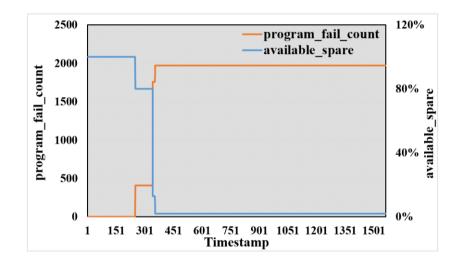
- Exhibit distinguish changing trend on the attribute (media_errors)
 - ✓ Healthy SSDs: Always 0
 - ✓ Failed SSDs: Exhibit either gradual or sharp increasing trend



Time Series Analysis (Bad Blocks)

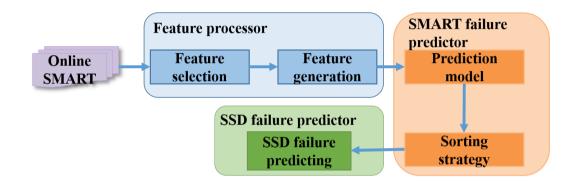
Exhibit sharp increasing trend on program_fail_count and decreasing trend on available_sapre

Failure happens when the value of available_spare decreases to a threshold



SAMSUNG Confidential

Our Scheme



- Feature processor: apply feature selection and generation method based on analysis result
- SMART feature predictor: propose RUS_ensemble method and sorting strategy
- SSD failure predictor: develop time window based SSD failure prediction method

Feature Processor

 Raw features are selected and new features are generated based on failure analysis result

Selected raw features	Generated new features	
data_units_read	data_units_read_diff	
data_units_written	data_units_written_diff	
nand_bytes_written	WAF	
host_bytes_written		
Temperature	temperature_diff	
power_on_hours	-	
media_errors	-	
available_spare	-	
program_fail_count	-	

Selected raw features

- ✓ Eight features indicative at least one type of failure
- ✓ One time indicator power_on_hours

Generated new features

- ✓ Differential features: capture time series related information
- ✓ WAF features: an indicative feature for bad blocks related failures

SMART Failure Predictor

• RUS_Ensemble prediction method is proposed to solve the data imbalance

problem

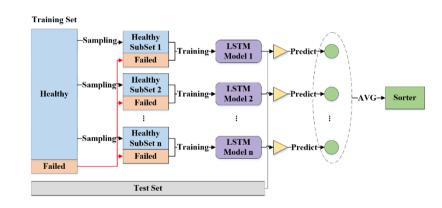
Solving data imbalance

Each base model is trained on a relative balanced dataset

- Whole failed data
- 1/n of the healthy data

Avoiding data information loss

- n base models are trained
- Splitting healthy data into n folds
- Each fold sampled by one base model
- Integrating the information of n base models by voting



SAMSUNG Confidentia

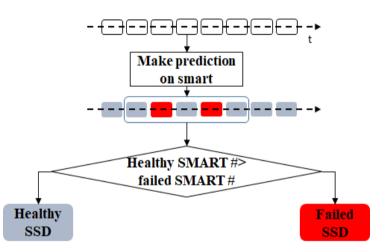
Method

SMART Failure Predictor

- Sorting strategy is proposed to solve the distribution variation problem
 - Assumes:
 - ✓ Daily failure ratio of SSDs and SMART observations is stable
 - There is no obvious fluctuation in the distribution of SMART attributes within a day
 - o Steps:
 - ✓ Categorize the SMART observations according to collection date
 - ✓ For each collection date, sort the SMART observations in descending order according to the risk score obtained from RUS_Ensemble model
 - ✓ Give failure prediction for the top P percent of observations

SSD Failure Predictor

- Purpose: Avoid false alarm to decrease FPR
- Step:
 - ✓ Arrange SMART logs in time axis
 - ✓ Slide time window in time axis
 - Make failure prediction for SSD based on the health/failure type of SMART logs in window



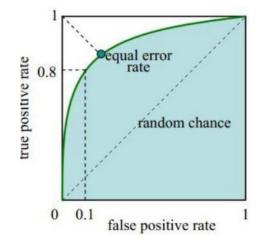
Result and Analysis

Settings

- Dataset :
 - ✓ Healthy drives: 100,000,
 - ✓ Failed drives: 114
 - ✓ Collection period: about one year
- Comparisons: 1) Bayes 2) RF 3) GBDT 4) LSTM

Evaluation Metrics

$$TPR = \frac{TP}{TP + FN}$$
$$FPR = \frac{FP}{FP + TN}$$
AUC (Area Under Curve of ROC)



Result and Analysis

Accurate Prediction of SSD Failures

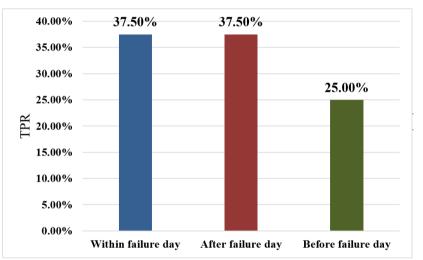
	TPR(%)	FPR(%)	AUC
Bayes	23.810	9.811	0.473
RF	9.523	0.00403	0.584
GBDT	4.762	0.00134	0.439
LSTM	9.524	0.00941	0.751
RUS_Ensemble	38.095	0.758	0.755

- ✓ Prior works fall short either in low TPR or high FPR
- The main contribution of our work is improve TPR while keep FPR less than 1%

Result and Analysis

Prediction Time Analysis

- 25% true positive drives are predicated ahead of the failure day
- 37.5% true positive drives are predicted behind the failure day
- 37.5% true positive drives are predicted within the failure day



Change point on SMART attributes of failed drives always occurs only a few hours before or several days after the failure day

Conclusion

- Provide a comprehensive study of SSD failure analysis
 - ✓ Conduct time series analysis and present failure pattern for each type SSD failures
- Propose a novel SSD failure prediction scheme improving TPR by 28% and bring about very low FPR which is 1%
 - Select correlated raw features and generate new features in feature processor module to construct indicative representation
 - Propose RUS_ensemble prediction method and sorting strategy for SMART failure prediction
 - ✓ Develop a time window based SSD failure prediction method

2021SRCX THANK YOU

Samsung R&D Institute China Xi'an(SRCX) established in 2013 and located in Xi'an High-tech Zone, is the only cutting-edge technology R&D institute

西安三星电子研究所 | SAMSUNG R&D INSTITUTE CHINA XIAN