Stochastic modelling and evaluation using GreatSPN

Elvio G. Amparore Università di Torino

Tools for Stochastic Modelling and Evaluation (TOSME) 12 Nov 2021

GreatSPN v3.0: an overview

The **Gr**aphical **E**ditor and **A**nalyzer for Timed and **S**tochastic **P**etri **N**ets (**GreatSPN**) is a framework for modeling systems as:

- Generalized Stochastic Petri Nets
- Stochastic Well-formed Nets
- Deterministic and Stochastic Petri Nets

Collection of separate tools.

Tools have a command line interface, and are accessible through a GUI.

Designed around a modeling workflow.

Open source.

Tools of GreatSPN

The GreatSPN framework tool collection covers these topics:

- **GUI** for drawing and composing models
- Translating various formats
- Model composition: model algebra, unfolding
- Analysis of **structural** model properties
- Markov decision process support (MDPN)
- Model checking using temporal logic specifications
- Stochastic solutions using:
 - Reachability Graph (explicit, symbolic or MDD)
 - Simulation
 - Differential equations (ODE/SDE)

Tools of GreatSPN - overview

Input formats

- Imports and exports **PNML**[1] models.
 - Supports both P/T and Symmetric Nets
 - Unfortunately PNML does not encode stochastic info
- Core format: **net/def** and **PNPRO** (Petri Net Project)
- Other model formats: APNN, GrML, NetLogo, UML, ... and PDF/PNG

The modelling workflow

Designed to simplify the learning curve of the framework.

using one of the supported extensions (GSPN, SWN, DSPN) + model composition

2. Verify structural integrity

P/T invariants and (semi)flows, siphons, traps, token game, deadlock analysis, CTL/LTL/CTL* 3. Specify & compute performance indices

run solver with a set of target measures

4. Export data or draw plot

CSV, Excel, PDF, PNG, ...

GSPN Example

Reader-Writer synchronization model

SWN Example

Database server model

DSPN Example

Model of a multi-utility company

Verifying structural properties

P/T (semi)flows, place bounds, siphons, traps, basis

	Fork	$work_1$	$work_2$	Join	select	T_0	\mathbf{m}_0
Queue	1	0	0	-1	0	0	n
$Wait_1$	-1	1	0	0	(n)	0	0
$Wait_2$	-1	0	1	0	0	0	0
Finish_1	0	-1	0	1	0	n	0
Finish_2	0	0	-1	1	0	0	0
Spares	0	0	0	0	1	-1	2
Interm	0	0	0	0	-1	1	0

incidence matrix

interactive token game

Model checking: deadlock, reachability, CTL, LTL, fair CTL, CTL*

Specify & compute performance indices

Core Solvers

Solvers that generate the RG:

- **GSPNRG**: basic RG of **GSPN** models.
- WNRG: RG of SWN models, i.e. supporting colored transition firings.
- WNSRG: Symbolic RG of SWN models, exploiting model symmetries.
- **DSPN-Tool**: steady state solution of **DSPN** models..
- **STARMC**: RG encoded using Decision Diagrams. Only limited stochastic solutions (steady state with Jacobi method) are possible, but very large state spaces (10¹⁰⁰ and beyond) can be encoded.

Non-RG solvers:

- WNSIM: Monte Carlo simulation using batch simulation.
- WNSSYM: simulation using symbolic markings.
- **PN2ODE**: solution using ODE/SDE.

External solvers:

- Cosmos (cosmos.lacl.fr/) statistical model checker
- **NSolve** (<u>Is4-www.cs.tu-dortmund.de/APNN-TOOLBOX/</u>) Kronecker representation (GSPN/DSPN)
- Storm (<u>www.stormchecker.org/</u>) model checker

Recent GreatSPN features

While GreatSPN started its development in 1986, 35 years ago, it is still actively developed.

Some features added in the last few years:

- The model checker **STARMC** Decision Diagrams to verify properties expressed in CTL/LTL/fair CTL /CTL*.
- The new Java GUI with the streamlined workflow.
- The **DSPN** solver.
- Support for the **PNML** format.
- **GreatMod**: dedicated platform for System Biology models (<u>https://qbioturin.github.io/epimod/</u>).

Availability

- GreatSPN is open source (GPLv2)
- Runs on all major platforms (Linux, Windows, macOS)
- Sources: https://github.com/greatspn/SOURCES
- Pre-installed VM: http://www.di.unito.it/~greatspn/VBox/