Imperial College TOSME 2071

TauSSA: Simulating Markovian
Queueing Networks with Tau Leaping

Matthew Sheldon

Department of Computing
Imperial College London
matthew.sheldon20@imperial.ac.uk

Joint work with:
G. Casale

mailto:g.casale@imperial.ac.uk

Imperial College
London

LINE Solver (line-solver.sf.net)

 MATLAB library for system performance and
reliability modelling based on queueing theory

* Ver 2.0: evolution into a multi-paradigm solver

Skip to: Videos | Downloads | Resources

LINE

Performance and Reliability Analysis Engine

What is LINE?

Home
Downloads LINE is an open source MATLAB library for system performance and reliability analysis based on queueing theory.
Manual -

s Main features
Wiki
API The tool offers a language to specify extended queueing networks and layered queueing networks together with
Videos analytical and simulation-based techniques for their solution.
Resources

Models are solved in LINE with either native algorithms (CTMC, fluid, simulation, MVA, ...) or via external solvers, such
support as JMT, LQNS, and BuTools. The tool output metrics include throughputs, utilizations, response times, queue-lengths,

and state probabilities. Metrics can be averages or distribution/percentiles, either in steady-state or transient regime.
Help forum

Report a bug Download
Request a feature

Download the latest release for MATLAB (version 2018a or later) or clone the source code repository.
Sourceforge site

Installation information is available in the README file.

Imperial College

Core features

|. Object-oriented language to model extended and
layered queueing networks (EQNs / LONS)

|. Model specification fully decoupled from analysis

Il. Seamless integration with IMT, LONS, BUTools

V. Multiple releases

. MATLAB source release

Il. Royalty-free binary release (Docker)
Line In numbers:

» 40+ algorithms - 100+ lang. classes

- 13 types of analyses * 14 node types
- 13 sched./routing strategies * 4 Metrics

Imperial College

TauSSA

Simulator for Queueing Networks

Partial Java-based redevelopment of core LINE classes

Both traditional SSA (Gillespie's Algorithm) and
Tau Leaping

Markovian phase-type distributions and Markov
Arrival Processes

Up to 100x the performance of SolverSSA in LINE
* 25%-50% more savings with Tau Leaping

https://github.com/imperial-qore/line-solver-java

Imperial College
London

Metrics Summary

TauSSA

Node

Delay
Delay
Queue

Queue

Class

Closedl
Closed2
Closedl
Closed?

Total solving time:

Total time:

11/12/2021

213

48

0 U RpT

2.45035 0.000B8 2.194562
5.94869 B8.00080 1.98377
B.54935 B0.16192 B0.51336
2.085851 B.61216 0.710894

Matthew Sheldon - Imperial College London

RsT

2.18926
1.97954
0.51294
B.710843

R

.229172
. 21884
. 228357
.218357

Imperial College

Motivation

Queueing networks are often tractable with
analytic methods..

e But analytic methods often introduce many
assumptions

More general classes of models can be studied
with simulation

Need for accurate and fast simulations.

Imperial College

Tau Leaping

* |Introduced by Gillespie, 2001

 Created to avoid expensive rate calculations in
simulated chemical reactions

 |dea: find all events in interval (t, t+t) and
simulate simultaneously

e (Question: can this be used to accelerate
gueueing simulations?

Imperial College

Tau Leaping

1. The system begins in state x, at time 0. Select a step size 1> 0.

2. The rate a;(x), for each possible transition j out of state x, is
calculated.

3. Generate a Poisson random variable n;* ~ Poisson (a;(x), T) for
each transition j.

4. Updatettot+Tt, and x based on:
1. The number of repetitions n',
2. The nature of the transition,
3. The state strategy (more on this later)

5. Return to step 2

Imperial College

Ordering Strategies

Considera queue with 2
jobs. The tau leaping
algorithm generates:

- 2 arrivals

- 3 departures
— [b

11/12/2021 Matthew Sheldon - Imperial College London

10

Imperial College

Ordering Strategies

Considera queue with 2
jobs. The tau leaping
algorithm generates:

- 2 arrivals

® 3 departures
— || [{)=

11/12/2021 Matthew Sheldon - Imperial College London

11

Imperial College

Ordering Strategies

Considera queue with 2
jobs. The tau leaping
algorithm generates:

- 2 arrivals

® 3 departures
— | b)¢

If departures are processed before arrivals, then
only 2 of the three jobs can leave. Afterwards,
another 2 jobs arrive. The ending state is x=2.

11/12/2021 Matthew Sheldon - Imperial College London 12

Imperial College

Ordering Strategies

Considera queue with 2
jobs. The tau leaping
algorithm generates:

- 2 arrivals

- 3 departures
— [b

11/12/2021 Matthew Sheldon - Imperial College London

13

Imperial College

Ordering Strategies

Considera queue with 2
jobs. The tau leaping
algorithm generates:

- 2 arrivals

- 3 departures

——eppje

However, if arrivals are processed first, then 4 jobs
will be available for departure. All 3 availablejobs
are processed, and the ending state is x=1.

11/12/2021 Matthew Sheldon - Imperial College London 14

Imperial College

Ordering Strategies

Considera queue with 2
jobs. The tau leaping
algorithm generates:

- 2 arrivals

® 3 departures
— |)
O

However, if arrivals are processed first, then 4 jobs
will be available for departure. All 3 availablejobs
are processed, and the ending state is x=1.

11/12/2021 Matthew Sheldon - Imperial College London 15

Imperial College

Ordering Strategies

Station 2

Station 1 /_> ‘ ‘ ‘ D__)
— [~ |
\ Station 3

— [O—

How should the simulator
order the departures from
each station?

11/12/2021 Matthew Sheldon - Imperial College London 16

Imperial College

Ordering Strategies - RandomEvent

* Shuffle the event list at each iteration.

* (+) Truest to standard simulation principles
* (+) All events will be evenly selected

e (-) Possibly slower than other methods

Imperial College

Ordering Strategies - RandomEventFixed

e Shuffle the event list at start of simulation.

* (+) May be faster than RandomEvent with models
with large numbers of nodes

e (+) Suitable for experiments with high number of runs

 (-)Biasinindividual runs due to constant event order

Imperial College

Ordering Strategies - DirectedGraph

* Find a topological sorting of nodes (Kahn's algorithm),
and apply events in this order.

* (+) Sensitive to the topology of the network

* (-) Creates upward bias in queue length

* (-) Potentially unsuitable for models with cycles and
capacities

Station 2 (1,2,3) or (1,3,2)

Station 1 ? | | | I } >
— ||
\ Station 3
— 1 O)—

Imperial College

Ordering Strategies - DirectedCycle

* Find a topological ordering of events, and move the
first event to the end at each iteration.

* (+) Sensitive to the topology of the network
* (+) Best-performing on experimental evaluation

* (-) Not sensitive to the rates of the system

Station 2

First iteration:(1,2,3) or (1,3,2)
: e
SEatioe 1 m__’ Second iteration:(2,3,1) or (3,2,1)
— | | _ Third iteration:(3,1,2) or(2,1,3)
\ Station 3
— [1{O)—

Imperial College

Handling Invalid States

* Tau Leaping will often request more departures
than there are jobs at a given station...

* ..ormore arrivals than the capacity will allow.

* We propose several methods to handle these
events

Imperial College

State Strategies - Cutoff

e After applying event, set x = max(0, min(x + d, c))
* d: requested state change (+/-)

* (+)Simple toimplement, obvious solution

* (-) Highly sensitive to event ordering

Imperial College

State Strategies - TwoTimes

* Pass through event list twice:

* First pass: Apply max repetitions m that don't
generate an illegal state, and update.

 Second pass: Apply remaining repetitions n-m, and
set the state accordingly with Cutoff.

(+) Allows a closer approximation of n;* events
 (+) Less sensitive to the event order
* (-) Possibly slower

Imperial College

Experimental Evaluation

* We analyze 500 randomly generated models
e 5M/M/1Queues
e 1 Open Class
« Random Topologies
 Eventrates between 1 and 50

* Accuracy is measured by the MAPE of the average Q
length.

Imperial College

London

11/12/2021

Simulation Time Ratio

Experimental Evaluation

g » RandomEventFixed, Cutoff
18] e 2 « RandomEventFixed, TwoTimes
' « RandomEvent, Cutoff
. . . » RandomEvent, TwoTimes
1.6 . « DirectedGraph,Cutoff
. DirectedGraph, TwoTimes
La- - ‘. » DirectedCycle,Cutoff
' + DirectedCycle, TwoTimes
. +
» L]
+
i* ﬂ-+ -+*++
4+ ®
1.0 A y A g7
L]
P L.% Y.
0.8 1 . .o, & . ° . -
L] . .
X * X . . x X
D.ﬁ L I I I I ! ! ! I
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

MAPE of Selected Queueing Models

Matthew Sheldon - Imperial College London

Tau Methods:

+: T =k/max(a;), k €{2.0,2.1..2.5}
o:t= k/avg(a;), k€{0.5,0.6..1.5}
X:t=k/min(a;), k€ {0.1,0.15..0.2}

28

Imperial College

London

[DirectedCycle, Cutoff]
dominatesall other
configurations.

11/12/2021

Simulation Time Ratio

Experimental Evaluation

» RandomEventFixed, Cutoff
» RandomEventFixed TwoTimes

1.8 *
s RandomEvent, Cutoff
. . . » RandomEvent, TwoTimes
1.6 . « DirectedGraph,Cutoff
. DirectedGraph, TwoTimes
14 . _: « DirectedCycle, Cutoff
' + DirectedCycle, TwoTimes
. +
] o .
+
i* ﬂ-+ -+*++
4+ =
1.0 - y . e
L]
¢ T L.% %o
0.8 1 . .o, & . ° . -
L] . . L]
X * X . . x X
ELE L I I I I ! ! ! I
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

MAPE of Selected Queueing Models

Matthew Sheldon - Imperial College London

Tau Methods:

+: T =k/max(a;), k €{2.0,2.1..2.5}
o:t= k/avg(a;), k€{0.5,0.6..1.5}
X:t=k/min(a;), k€ {0.1,0.15..0.2}

No demonstrated
difference between tau
calculation methods.

29

Imperial College
London

[DirectedCycle, Cutoff]
dominatesall other
configurations.

Simulation Time Ratio

11/12/2021

Experimental Evaluation

» RandomEventFixed, Cutoff
» RandomEventFixed TwoTimes

1.8 *
s RandomEvent, Cutoff
. . . » RandomEvent, TwoTimes
1.6 . « DirectedGraph,Cutoff
DirectedGraph, TwoTimes
14 . _: « DirectedCycle, Cutoff
' + DirectedCycle, TwoTimes
+
1.2 - : %
bt + 4
ﬁ-t++
1.0 - At e s
™ L
L.% % e
0.8 1 'lx & . -. - ¢
L] . .
. X [I] o X
ELE L I I I I ! ! ! I
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

MAPE of Selected Queueing Models

Matthew Sheldon - Imperial College London

Tau Methods:

+: T =k/max(a;), k €{2.0,2.1..2.5}
o:t= k/avg(a;), k€{0.5,0.6..1.5}
X:t=k/min(a;), k€ {0.1,0.15..0.2}

No demonstrated
difference between tau
calculation methods.

30

Imperial College

Conclusion

 We have proposed TauSSA, a gueueing simulator
based on SSA and Tau Leaping

 Tau Leaping with TauSSA can significantly accelerate

queueing simulations with attention to event ordering
and t, and accuracy tradeoffs.

 Future work
* Automated methods to determine t.
* Investigation of other nodes, processing regimes,
and distributions with tau leaping.

https://github.com/imperial-gore/line-solver-java

