
TauSSA: Simulating Markovian 
Queueing Networks with Tau Leaping

Matthew Sheldon
Department of Computing 
Imperial College London

matthew.sheldon20@imperial.ac.uk

Joint work with: 
G. Casale

TOSME 2021

mailto:g.casale@imperial.ac.uk


• MATLAB library for system performance and 

reliability modelling based on queueing theory

• Ver 2.0: evolution into a multi-paradigm solver

LINE Solver (line-solver.sf.net)



I. Object-oriented language to model extended and 

layered queueing networks (EQNs / LQNs)

II. Model specification fully decoupled from analysis

III. Seamless integration with JMT, LQNS, BUTools

IV. Multiple releases

I. MATLAB source release

II. Royalty-free binary release (Docker)

Line in numbers:

• 40+ algorithms

• 13 types of analyses

• 13 sched./routing strategies

Core features

• 100+ lang. classes

• 14 node types

• 4 metrics



Simulator for Queueing Networks

• Partial Java-based redevelopment of core LINE classes

• Both traditional SSA (Gillespie's Algorithm) and 
Tau Leaping

• Markovian phase-type distributions and Markov 
Arrival Processes

• Up to 100x the performance of SolverSSA in LINE

• 25%-50% more savings with Tau Leaping

TauSSA

11/12/2021 Matthew Sheldon - Imperial College London 4

https://github.com/imperial-qore/line-solver-java



TauSSA

11/12/2021 Matthew Sheldon - Imperial College London 5



• Queueing networks are often tractable with 
analytic methods..

• But analytic methods often introduce many 
assumptions

• More general classes of models can be studied 
with simulation

• Need for accurate and fast simulations.

Motivation

11/12/2021 Matthew Sheldon - Imperial College London 6



• Introduced by Gillespie, 2001

• Created to avoid expensive rate calculations in 
simulated chemical reactions

• Idea: find all events in interval (t, t+τ) and 
simulate simultaneously

• Question: can this be used to accelerate 
queueing simulations?

Tau Leaping

11/12/2021 Matthew Sheldon - Imperial College London 8



1. The system begins in state x0 at time 0. Select a step size τ > 0.

2. The rate aj(x), for each possible transition j out of state x, is 
calculated.

3. Generate a Poisson random variable nj
τ ~ Poisson (aj(x), τ) for 

each transition j.

4. Update t to t + τ, and x based on:

1. The number of repetitions nj
τ,

2. The nature of the transition,

3. The state strategy (more on this later)

5. Return to step 2

Tau Leaping

11/12/2021 Matthew Sheldon - Imperial College London 9



Ordering Strategies

11/12/2021 Matthew Sheldon - Imperial College London 10

Consider a queue with 2
jobs. The tau leaping 
algorithm generates:
- 2 arrivals
- 3 departures



Ordering Strategies

11/12/2021 Matthew Sheldon - Imperial College London 11

Consider a queue with 2
jobs. The tau leaping 
algorithm generates:
- 2 arrivals
- 3 departures



Ordering Strategies

11/12/2021 Matthew Sheldon - Imperial College London 12

Consider a queue with 2
jobs. The tau leaping 
algorithm generates:
- 2 arrivals
- 3 departures

If departures are processed before arrivals, then 
only 2 of the three jobs can leave. Afterwards, 
another 2 jobs arrive. The ending state is x=2.



Ordering Strategies

11/12/2021 Matthew Sheldon - Imperial College London 13

Consider a queue with 2
jobs. The tau leaping 
algorithm generates:
- 2 arrivals
- 3 departures



Ordering Strategies

11/12/2021 Matthew Sheldon - Imperial College London 14

Consider a queue with 2
jobs. The tau leaping 
algorithm generates:
- 2 arrivals
- 3 departures

However, if arrivals are processed first, then 4 jobs 
will be available for departure. All 3 available jobs 
are processed, and the ending state is x=1.



Ordering Strategies

11/12/2021 Matthew Sheldon - Imperial College London 15

Consider a queue with 2
jobs. The tau leaping 
algorithm generates:
- 2 arrivals
- 3 departures

However, if arrivals are processed first, then 4 jobs 
will be available for departure. All 3 available jobs 
are processed, and the ending state is x=1.



Ordering Strategies

11/12/2021 Matthew Sheldon - Imperial College London 16

Station 1

Station 2

Station 3

How should the simulator 
order the departures from 
each station?



Ordering Strategies - RandomEvent

11/12/2021 Matthew Sheldon - Imperial College London 17

• Shuffle the event list at each iteration.

• (+) Truest to standard simulation principles

• (+) All events will be evenly selected

• (-) Possibly slower than other methods



Ordering Strategies - RandomEventFixed

11/12/2021 Matthew Sheldon - Imperial College London 18

• Shuffle the event list at start of simulation.

• (+) May be faster than RandomEvent with models 
with large numbers of nodes

• (+) Suitable for experiments with high number of runs

• (-) Bias in individual runs due to constant event order



Ordering Strategies - DirectedGraph

11/12/2021 Matthew Sheldon - Imperial College London 19

• Find a topological sorting of nodes (Kahn's algorithm), 
and apply events in this order.

• (+) Sensitive to the topology of the network

• (-) Creates upward bias in queue length

• (-) Potentially unsuitable for models with cycles and 
capacities

(1,2,3) or (1,3,2)



Ordering Strategies - DirectedCycle

11/12/2021 Matthew Sheldon - Imperial College London 20

• Find a topological ordering of events, and move the 
first event to the end at each iteration.

• (+) Sensitive to the topology of the network

• (+) Best-performing on experimental evaluation

• (-) Not sensitive to the rates of the system

First iteration: (1,2,3) or (1,3,2)
Second iteration: (2,3,1) or (3,2,1)
Third iteration: (3,1,2) or (2,1,3)



• Tau Leaping will often request more departures 
than there are jobs at a given station...

• …or more arrivals than the capacity will allow.

• We propose several methods to handle these 
events

Handling Invalid States

11/12/2021 Matthew Sheldon - Imperial College London 21



State Strategies - Cutoff

11/12/2021 Matthew Sheldon - Imperial College London 22

• After applying event, set x = max(0, min(x + d, c))

• d: requested state change (+/-)

• (+) Simple to implement, obvious solution

• (-) Highly sensitive to event ordering



State Strategies - TwoTimes

11/12/2021 Matthew Sheldon - Imperial College London 23

• Pass through event list twice:

• First pass: Apply max repetitions m that don't 
generate an illegal state, and update.

• Second pass: Apply remaining repetitions n-m, and 
set the state accordingly with Cutoff.

• (+) Allows a closer approximation of nj
τ events

• (+) Less sensitive to the event order

• (-) Possibly slower



Experimental Evaluation

11/12/2021 Matthew Sheldon - Imperial College London 26

• We analyze 500 randomly generated models

• 5 M/M/1 Queues

• 1 Open Class

• Random Topologies

• Event rates between 1 and 50

• Accuracy is measured by the MAPE of the average Q 
length.



Experimental Evaluation

11/12/2021 Matthew Sheldon - Imperial College London 28

Tau Methods:
+: τ = k/max(aj), k ∈ {2.0, 2.1..2.5}
o: τ = k/avg(aj), k∈ {0.5, 0.6..1.5}
X: τ = k/min(aj), k∈ {0.1, 0.15..0.2}



Experimental Evaluation

11/12/2021 Matthew Sheldon - Imperial College London 29

[DirectedCycle, Cutoff]
dominates all other 
configurations.

No demonstrated 
difference between tau 
calculation methods.

Tau Methods:
+: τ = k/max(aj), k ∈ {2.0, 2.1..2.5}
o: τ = k/avg(aj), k∈ {0.5, 0.6..1.5}
X: τ = k/min(aj), k∈ {0.1, 0.15..0.2}



Experimental Evaluation

11/12/2021 Matthew Sheldon - Imperial College London 30

[DirectedCycle, Cutoff]
dominates all other 
configurations.

No demonstrated 
difference between tau 
calculation methods.

Tau Methods:
+: τ = k/max(aj), k ∈ {2.0, 2.1..2.5}
o: τ = k/avg(aj), k∈ {0.5, 0.6..1.5}
X: τ = k/min(aj), k∈ {0.1, 0.15..0.2}



Conclusion

11/12/2021 Matthew Sheldon - Imperial College London 31

• We have proposed TauSSA, a queueing simulator 
based on SSA and Tau Leaping

• Tau Leaping with TauSSA can significantly accelerate 
queueing simulations with attention to event ordering 
and τ, and accuracy tradeoffs.

• Future work

• Automated methods to determine τ.

• Investigation of other nodes, processing regimes, 
and distributions with tau leaping.

https://github.com/imperial-qore/line-solver-java


