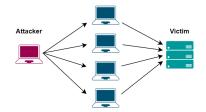


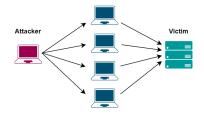
Fundamental Scaling Laws of Covert DDoS Attacks

¹Amir Reza Ramtin, ²Philippe Nain, ³Daniel S. Menasche, ¹Don Towsley, ³Edmundo de Souza e Silva


¹UMass Amherst, USA, ²INRIA, France, ³UFRJ, Brazil

November 2021

- Problem Overview
 - Motivation
 - System description
- Analysis
 - Theoretical results
 - Evaluation


Distributed Denial of Service Attacks

• A Distributed Denial of Service (DDoS) attack is an attempt to crash system by overwhelming it with data.

Distributed Denial of Service Attacks

• A Distributed Denial of Service (DDoS) attack is an attempt to crash system by overwhelming it with data.

• Next generation of botnets will attempt to be undetectable.

• Collection of homes connected to Internet through ISP.

- Collection of homes connected to Internet through ISP.
- Attacker compromises homes to form botnet.

- Collection of homes connected to Internet through ISP.
- Attacker compromises homes to form **botnet**.

 Attacker may use all homes or fraction of them to issue attack.

• Attacker may use all homes or **fraction of them** to issue attack.

 Attacker can determine rate at which each home should inject attack traffic into network.


System Description (Defender)

System Description (Defender)

• Sample collected every minute and transmitted to admin.

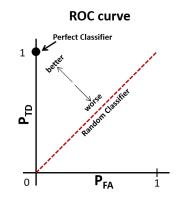
- Sample collected every minute and transmitted to admin.
- Admin runs detector on samples.

- Sample collected every minute and transmitted to admin.
- Admin runs detector on samples.
- An attack is **covert** if admin cannot detect attack.

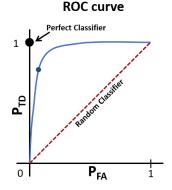
• Can attacker launch covert attack?

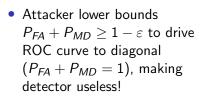
• Can attacker launch covert attack? if so, how large an attack can he launch?

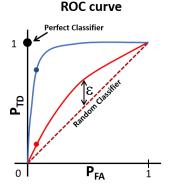
Model


- *n*: number of homes.
- X_r: regular traffic from home r,
 - {*X_r*}: independent sequence of r.v.'s
- Y_r: attack traffic from home r
 - $\{Y_r\}$: iid sequence of r.v.'s
- $\chi_r \in \{0,1\}
 ightarrow \chi_r = 1$ if attacker uses home r

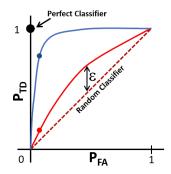
•
$$q(n) \equiv \mathbb{P}(\chi_r = 1)$$

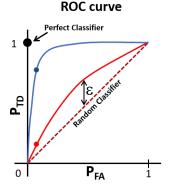

• Z_r : amount of observed traffic at home r,


$$Z_r = \begin{cases} X_r & \text{if no attack occurs,} \\ X_r + \chi_r Y_r & \text{otherwise.} \end{cases}$$


- If density functions are known, admin can construct an optimal statistical hypothesis test.
 - H_0 (no attack taking place): $Z_r = X_r$
 - H_1 (attack taking place): $Z_r = X_r + \chi_r Y_r$
- Admin can tolerate false alarms: $p_{FA} < \alpha$
- Admin may fail to detect attacks: p_{MD}

Admin fixes P_{FA} and uses an optimal detector, which maximizes P_{TD}.





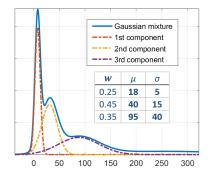
•
$$P_E = P_{FA} + P_{MD}$$

 Attack is covert provided, for any ε > 0, attacker has strategy for each n such that

$$P_E \ge 1 - \varepsilon$$

- P_E^{\star} error of optimal detector
- $f_i^{(n)}$ joint pdf of $\underline{Z}_1, \ldots, \underline{Z}_n$ under H_i , i = 0, 1
- T_V relates to L_1 norm, $T_V(P,Q) = rac{1}{2} \|P-Q\|_1$

$$P_E^{\star} = 1 - T_V \left(f_0^{(n)}, f_1^{(n)} \right)$$


Achievability (traffic models)

- X_r Gaussian Mixture
 - mean $\mu_{0,r}$, variance $\sigma_{0,r}^2$
- Y_r Gaussian Mixture
 - mean $\mu_1(n)$, variance $\sigma_1^2(n)$

Achievability (traffic models)

- X_r Gaussian Mixture
 - mean $\mu_{0,r}$, variance $\sigma_{0,r}^2$
- Y_r Gaussian Mixture
 - mean $\mu_1(n)$, variance $\sigma_1^2(n)$
- Example: X_k

•
$$\mu_{0,k} = \sum_{i=1}^{3} w_i \mu_i = 33.25$$

• $\sigma_{0,k}^2 = \sum_{i=1}^{3} w_i \sigma_i^2 = 667.5$

Theorem (Achievability)

Under some mild conditions attack traffic is covert if

$$q(n)\mu_1(n) = \mathcal{O}(1/\sqrt{n}), \quad q(n)\sigma_1^2(n) = \mathcal{O}(1/\sqrt{n}).$$

Achievability (Proof Sketch)

- Total variation distance is not easy to work!
- Upper bound on total variation distance

$$T_V\left(f_0^{(n)}, f_1^{(n)}\right) \leq \frac{1}{2}\sqrt{(1+q(n)^2C(n))^n-1}$$

where C(n) is

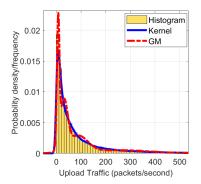
$$C(n) = -1 + \int_{\mathbb{R}} \frac{f_1(x,n)^2}{f_0(x)} dx.$$

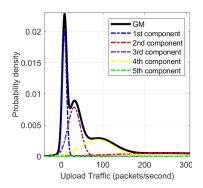
• If $q(n)\sqrt{C(n)} = \mathcal{O}(1/\sqrt{n})$ then $T_V\left(f_0^{(n)}, f_1^{(n)}\right) \leq \varepsilon.$

- Traffic Models
 - X_r arbitrary distributions, mutually independent
 - Y_r arbitrary distribution, iid

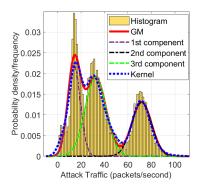
Theorem (Converse)

Under some mild conditions attacker is not covert if

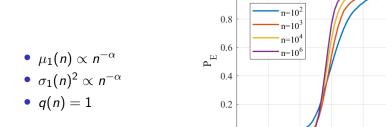

$$q(n)\mu_1(n) = \omega(1/\sqrt{n})$$
$$\operatorname{var}(\chi_r Y_r) = \mathcal{O}(1).$$


- Apply detector of form $\frac{1}{n}\sum_{r=1}^{n} z_r \leq \tau$
- We should have been able to use CLT.
 - Problem: z_r depends on n!
 - Apply Berry-Esseen theorem.

- Achievability theorem holds when admin does not know attack traffic distribution statistics as it cannot perform better with less knowledge.
- Converse theorem holds when admin knows attack traffic distribution as it cannot perform less effectively with more knowledge.


- Regular traffic collected at minute intervals from more than 5000 home-routers between March 1st 2020 and April 30th 2020.
- Traffic feature: packet counts of upstream traffic.

- Regular traffic collected at minute intervals from more than 5000 home-routers between March 1st 2020 and April 30th 2020.
- Traffic feature: packet counts of upstream traffic.
- Distribution model: mixture of five Gaussians



- Estimate distribution of traffic generated by typical DDoS attack in lab.
- Traffic feature: packet counts of upstream traffic.
- Distribution model: mixture of three Gaussians

- Two different tests
 - Likelihood ratio test: $\Lambda < \tau \rightarrow$ attack, where Λ is likelihood ratio
 - Volume test: $\frac{1}{n}\sum_{r=1}^{n} z_r > \tau \rightarrow \text{attack}$
- Find threshold au given $p_{F\!A} = 0.01$
 - Monte Carlo methods
- $P_E = P_{FA} + P_{MD}$
- Two scenarios
 - Attacker uses all homes to launch attacks
 - Attacker uses fraction of homes to launch attacks

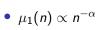
Scenario 1: attack from all homes

0

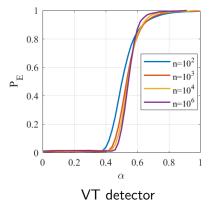
0

0.2

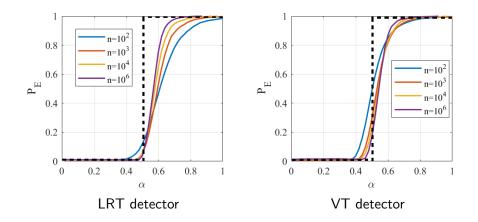
0.4


 $^{\alpha}$ LRT detector

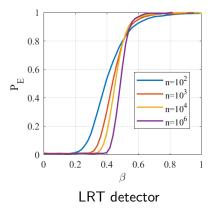
0.6


0.8

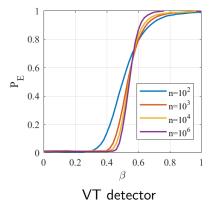
1

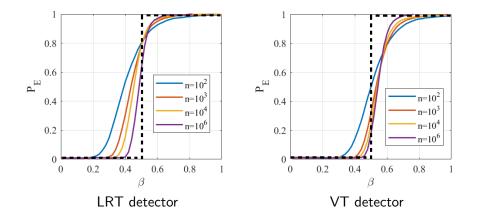

Scenario 1: attack from all homes

- $\sigma_1(n)^2 \propto n^{-\alpha}$
- q(n) = 1


Phase Transition (scenario 1)

Scenario 2: attack from subset of homes


• $q(n) = n^{-\beta}$


Scenario 2: attack from subset of homes

• $q(n) = n^{-\beta}$

Phase Transition (scenario 2)

- We showed that attacker can launch covert attack generating $O(\sqrt{n})$ total aggregated attack traffic.
- Assumption: traffic follows Gaussian mixture distribution.
- Tightness of scaling law regardless of distribution type.

Thank you for listening!

?

