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Introduction

I EVs are an energy intensive load to the grid!
I But users may have flexibility in their charging times.

Main question:

How do we schedule EV charging with deadlines?

Which also begs the question...

What happens if we don’t know the deadlines exactly?
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Our work

Main contribution:

Mean field analysis of EV scheduling with uncertain deadlines.

Highlights:

I We analyze the behavior of typical policies through fluid limits (mean field).
I Discuss the impact of uncertainty in the deadline.
I Analyze how to curb incentives to under-report deadlines.
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�eueing model
Large parking lot with individual charging stations

λ

�

Tra�ic parameters:
I λ = arrival rate of EVs.

I Tk = sojourn time (deadline).
I Sk = service time at nominal power.

System capacity (max-power): C.

System load: ρ := λE[S].

We focus on the overload scenario ρ > C.
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Least-Laxity-First Policy

Let us define, for a vehicle k at time t:

σk(t) := remaining service time,

τk(t) := remaining sojourn time.

Then the EV laxity is:
`k := τk − σk

I Idea: Amount of time le� to begin service and meet the deadline.
I If `k becomes negative, the EV will depart with some reneging. Equal to −`k upon

departure.

LLF policy: serve the C vehicles with lower laxities.
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Least-laxity-first (LLF) in overload [Zeballos, F., Paganini TSG 2019]
Mean field behavior: λ,C →∞ with constant C/ρ

t

S

T

t + T

L

L

t + L− `∗0

`∗0 = −σ∗0

I Vehicle arrives at time t.
I Gets service at time t + L− `∗0 .
I Departs at time t + S + L.

A�ained service:

Sa = (S − σ∗0 )+.

Everybody reneges with σ∗0 or less.

Threshold condition:

λE[(S − σ∗0 )+] = C

Andres Ferragut, Univ. ORT Uruguay IFIP Performance 21 7/21



Least-laxity-first (LLF) in overload [Zeballos, F., Paganini TSG 2019]
Mean field behavior: λ,C →∞ with constant C/ρ

t

S

T

t + T

L

L

↙
LLF charge profile

t + L− `∗0

`∗0 = −σ∗0

I Vehicle arrives at time t.
I Gets service at time t + L− `∗0 .
I Departs at time t + S + L.

A�ained service:

Sa = (S − σ∗0 )+.

Everybody reneges with σ∗0 or less.

Threshold condition:

λE[(S − σ∗0 )+] = C

Andres Ferragut, Univ. ORT Uruguay IFIP Performance 21 7/21



Least-laxity-first (LLF) in overload [Zeballos, F., Paganini TSG 2019]
Mean field behavior: λ,C →∞ with constant C/ρ

t

S

T

t + T

L

L

↙
LLF charge profile

t + L− `∗0

`∗0 = −σ∗0

Sa = S − σ∗0

I Vehicle arrives at time t.
I Gets service at time t + L− `∗0 .
I Departs at time t + S + L.

A�ained service:

Sa = (S − σ∗0 )+.

Everybody reneges with σ∗0 or less.

Threshold condition:

λE[(S − σ∗0 )+] = C

Andres Ferragut, Univ. ORT Uruguay IFIP Performance 21 7/21



Dealing with uncertain deadlines

I In practice the service time S is known upon arrival (smart chargers).
I However the sojourn time is based on customer declarations.
I Therefore, users may report uncertain sojourn times.

�estion:

How does the LLF scheduler behave when using these uncertain deadlines?
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LLF with uncertain deadlines

Two deadlines:
I Real (hidden) sojourn time Tk . Users depart on expiration.
I Declared sojourn time T ′k (assumed random, possibly correlated with Tk).

Therefore, the user has an observed laxity:

`′k = σk − τ ′k
with τ ′k the remaining declared sojourn time.

Assumption: the scheduler only uses the declared information, and serves in increasing
order of their observed laxity `′.
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Uncertain LLF
Mean field behavior: λ,C →∞ with constant C/ρ

t

S

T

t + T

L
L′

↙
LLF profile with uncertain laxity

t + L′ − `∗

`∗ = −σ∗

Sa = S + L− L′ − σ∗

I Vehicle arrives at time t.
I Gets service at time t + L′ − `∗.
I Departs at time t + S + L.

A�ained service:

Sa = (S + L− L′ − σ∗)+

Threshold condition:

λE[(S + L− L′ − σ∗)+] = C

Remark: The threshold only depends on S
and the uncertainty U = T ′ − T .
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A parametric example
Exponential service time, uniform uncertainty

Assume:
I S ∼ exp(µ).
I U = T ′ − T = Uniform[−θ, θ].

Focus now on individual uncertainties:

E[Sa | U ] = E[(S + L− L′ − σ∗)+} | U ],

Proposition

In an LLF system in overload, with S ∼ exp(µ) service times and independent uncertainty
U = T ′ − T in declared deadlines, the a�ained service for a given uncertainty is:

E[Sa | U ] =
e−µ(U+σ∗)

µ
. (1)

Andres Ferragut, Univ. ORT Uruguay IFIP Performance 21 11/21



Performance comparison

To compare the performance, let us compute:

RG(U ) =
E[Sa − S0a | U ]

E[S]
=

E[Sa | U ]− E[S0a]
E[S]

.

the relative average gain against the full information case, for a given uncertainty level.

For the parametric model this yields:

RGLLF(U ) =
C
ρ

(
µθ

sinh(µθ)
e−µU − 1

)
.
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Simulation example

Tra�ic parameters:
I λ = 30.
I E[S] = 2hs.
I E[T ] = 6hs.
I θ = 1 (±1h uncertainty)
I C = 40,
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Dealing with incentives

I The average service of a given EV is decreasing on the reported uncertainty U .
I People that under-report their deadlines get priority sooner.
I Since they are served until departure, this leads to a longer service time.

I An incentive appears to under-report sojourn times.

�estion: how can we handle mis-behaving users?
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Curtailed LLF policy

Simple solution: Apply a curtailed version of the LLF policy.

Curtailed LLF policy:

I Serve vehicles in increasing order of their remaining declared laxities `′.
I Stop service when the declared deadline expires, even if the vehicle is still present.
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Curtailed LLF policy
Mean field behavior: λ,C →∞ with constant C/ρ

For the curtailed policy, the a�ained service in the mean field limit is:

Sa =
(
S − (L− L′)1{L<L′} − σ∗

)+
,

And the threshold satisfies:

λE[
(
S − (L− L′)1{L<L′} − σ∗

)+
] = C.

Remark: The indicator term reduces the gain to 0 for L′ < L.
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Real world scenario

I We simulate our algorithms using real world traces from a parking lot at a Silicon
Valley firm (thanks to Steven Low).

I Multi-day period with time-varying demand and congestion.

I C = 30 charging stations, T̄ = 2.25 hs., S̄ = 1.77 hs.

I Uniform uncertainty with θ = 0.5 hs.

I The parking works in overload 73% of the total simulation time.
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Results

No curtailing With curtailing

Remark: the curtailed policy works by curbing under-reporting deadlines in this
scenario.
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Conclusions

I We analyzed the behavior of the LLF policy working with uncertain deadlines.

I Through mean-field analysis, we derived explicit expressions for the system
performance.

I We provided a suitable policy to curb the incentive to under-report deadlines.
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Thank you!

Andrés Ferragut
ferragut@ort.edu.uy
h�p://fi.ort.edu.uy/mate
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