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All-or-Nothing Flow

* Directed, connected edge-capacitated network G = (V,E), where
n=|V|,m=|E|

* k commodities: (source, sink)-pairs (s;,t;),i € [k] and s;,t; €V
with demand d; > 0 and weight w; > 0.

All-or-Nothing Multicommodity Flow (ANF):

* for each commodity i, route either d; or O units from s; to.t;.

[Chekuri et al., STOC 2004]




Example

(Flow-Value,Edge-Capacity)

dl — 1, W1 — 5
0'1) dz — 3, WZ =3
(0,2)
(0,2)
0,1)
(0,1)

Demands are allowed te'be
Instance G = (V, E) bigger than edge capacities!




Flow for Commodity 1

(Flow-Value,Edge-Capacity)

dl — 1, W1 — 5
1’1) dz — 3, WZ =3
(1,2)
(0,2)
0,1)
(0,1)

Instance G = (V, E)




Flow for Commodity 2

(Flow-Value,Edge-Capacity)

(0,1)
(2,2)
(2,2) 0.2)

(1,1) . )
// o " o

Split Flow Instance G = (V, E)

d1:1,W1:5
d2:3,W2 =3




Routing Both Commodities

Flow-Value,Edge-C it
CapaC|tyV|oIat|on (Flow-Value,Edge-Capacity)

dl — 1, Wl — 5
1’1 dz — 3, WZ =3
(1+2 2)
(2,2) ~ -

(1,1)

(1,1)
(1,1)
/ . . Infeasible Flow!!

Split Flow Instance G = (V,E)




Optimum Solution

(Flow-Value,Edge-Capacity)

dl — 2, Wl — 5
1’1) dz — 3, WZ =3
(1,2)
(0,2)
0,1)

(0,1)

Instance G = (V, E)




ANF Problem

* Find a maximum weight routable
subset of commodities S C |k].

* (Optimal) throughput: },;cc w;




Our
Contributions

Deeper understanding of packing and
compact edge-flow ANF LP
formulations and their equivalence.

Randomized Rounding performance
improved over state-of-the-art:

- Tighter theoretical guarantees
- Lower space requirements

- Allows for more constrained extensions

Experimental Evaluation




The Packing Formulation

* Let F; be the set of all valid canonical
d;-flows for commodity i.

* |F;| is exponential _

* LP-relaxation can be solved in poly-time
via multiplicative-weight updates (MWU)

Each commodity flow is expressed as
a convex combination of flows in F;.

x; indicates whether to route commodityi —



* Hard to approximate within constant factor

H a rd n e S S * |dea: Allow congestion> 1, i.e., allow bounded

edge capacity violations
* Even with constant factor congestion, still hard to
approximate within polynomial factor
[Chuzhoy et al., STOC 2007]

Capacity Violation

1,1) j (1,1

(1+2,2) . Congestion Ratio: 3/2
(2,2) - (2,2) Throughput: 5

9 (,1) (1,1) @
(1,1)
O O




Theoretical Results

* (a,f)-approximation: A feasible solution with
* > « fraction of the optimal throughput
» < 3 factor bound on largest congestion

Theorem:Form = 9,e > 1/m there exists a polynomial time randomized
. . Inm
algorithm that yields a (1 —€,0 (

))-approximation with high probability.

InInm

* Improves over O (%, 0(\/k- logn ))—approximation of [Liu et al., INFOCOM 2019]




The Compact Edge-Flow Formulation

k
* Polynomial size (polynomial # of variables) max Z wif; [Liu et al., INFOCOM 2019]
i=1
* Yields easier randomized roundin
. ; Z fi(si0) = [ Vi € |k]
e Equivalence between the compact edge- (s;0) €E

flow and the packing formulations

!

given a feasible solution to one relaxed LP
we can obtain a feasible solution to the

(u,v)€E (o,u)€E

Z fituo) - di < C(up) V(u,0) € E

other relaxation of the same flow and

. . . ﬁ,[u,n) ’ di < ﬁ " Clu,o) Vi € [kI,V(H, U) e E
objective values, hence theoretical

fi(uo) =0 Vi € |k],V(u,0) € E

guarantees carry over!
fi €10,1} Vi € | k|



Algorithm 1: Randomized Rounding Algorithm

Ra N d om |Ze d RO un d | N g Input : Directed graph G(V, E) with edge

capacities c. > 0,Ve € E; set of k pairs of

commodities (s;,%;), each with demand

d; > 0 and weight w; > 0; € € (0, 1]
Output: The final values of f; and f; . and > w;f;

* Slmple to implement and fast 1 Let ﬁ, jlc, Vi € [k],Ve € E, be a feasible solution tc
. . compact LP.

* SpeCIaI case of randomized 2 For each i € [k], independently, set f; = 1 with
rounding for the packing probability fi, otherwise set fi = 0.
formulation, SO same bOUI’]dS Sti” 3 Rescale the fractional flow f; . from the LP sollltior
apply on edge e for commodity 2 by ﬁ Le., fie= f}% :

o and the flow for commodity 7 on e is given by f; «c

e Derandomization: A S wifi > (1— )Y wifi and

* Deterministic guarantees on > . fiedi < (3blnm/Inlnm)c(e) for all e € E,
approximation bounds return the corresponding flow assignments given b

fi and f; ., Vi € [k] and e € E. Otherwise, repeat

* Much slower in practice than steps 2 and 3, O((In 'TTI.-)/EQ) times.

randomized rounding




Solving the Relaxed LP

* CPLEX:

Very fast
Solves optimally
Relatively high space complexity

* Multiplicative Weight Update (MWU):

Low Space Complexity

Solves the LP to arbitrarily high precision with a
trade off with the running time

* Permutation Routing:

Very low space complexity
Fast heuristic based on MWU (slower than CPLEX)
Works well in practice

Algorithm 1: MWU for Multi-Commodity ANF Problem

BOSr el R e Iy

Inputs: Directed graph G(V.E), ¢ : E — R*, a set S of k pairs of commodities (s;, ;) each with
demand d; and y € R*
Change G by adding dummy terminal s] and edge(s/, s;) with capacity d;. This ensures that we
don’t route more than d; units for pair i. We will assume this has been done and simply use
(si t;) instead of (s, t;)
Output: Total flow f, on each e. f(s],s;)/d; gives the fraction of commodity i that is routed
Define a length/cost function ¢ : E — R* and initialize £, < 1,Ve € E
Define a function f : E — Ry and initialize f, « 0,Ve € E
Define n « liyl—Fi—l
repeat

for each commodity i € S do

Compute min-cost flow of d; units from s; to ¢; with capacities c(e) and cost given by £.

(If no feasible flow then pair i can be dropped.) Let this flow be defined by g;(e), e € E and let
cost of this flow be p(i) = . £(e)gi(e)
ieS %:)
Y . gi(e)
n cle)

Set i* «— argmin
Compute § « min,

for each e do
Set fo «— fo +dgi-(e)
if f. > c. then
Output f and halt
else

Update £, < exp(nfe/ce)

: until termination




Algorithmic Architecture
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Relaxed LPs

Permutation
Routing

Fractional Solutions

Randomized
Rounding

Integral Solutions



Experimental Design

Germany50 network from SNDIib.

* Relatively large compared to other networks, with many
commodities.

Execute all combinations of LP solvers and algorithms for integral
solutions under various parameters.

* For each experiment, compute:
Output of Experiment

* Throughput ratio a = : ;
Optimal LP Solution

* Edge capacity violation ration § = mEaEX(Z{-‘Zlfi(e)/c(e))
e

Note that recorded @ > 1 is possible since f > 1.
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Vertices: 50, Edges: 176, Commodities: 662

Experimental
Results &
Findings
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Future Work

Experiments on larger networks (for which CPLEX fails)

Experiments with packing formulation extensions

Improved Randomized Rounding Performance via resampling techniques
(Lovasz-Local-Lemma)



