Improved Throughput for All-or-Nothing Multicommodity Flows with Arbitrary Demands

Anya Chaturvedi (Matthias Rost (S

Chandra Chekuri A Stefan Schmid J

Andrea W. Richa Jamison Weber

Arizona State University University of Illinois Urbana Champaign TU-Berlin & Frauenhofer Institute

All-or-Nothing Flow

- Directed, connected edge-capacitated network G = (V, E), where n = |V|, m = |E|
- k commodities: (source, sink)-pairs $(s_i, t_i), i \in [k]$ and $s_i, t_i \in V$ with demand $d_i > 0$ and weight $w_i > 0$.

All-or-Nothing Multicommodity Flow (ANF):

• for each commodity *i*, route either d_i or 0 units from s_i to t_i .

[Chekuri et al., STOC 2004]

ANF Problem

• Find a maximum weight routable subset of commodities $S \subseteq [k]$.

• (Optimal) throughput: $\sum_{i \in S} w_i$

Our Contributions

Deeper understanding of packing and compact edge-flow ANF LP formulations and their equivalence.

Randomized Rounding performance improved over state-of-the-art:

- Tighter theoretical guarantees
- Lower space requirements
- Allows for more constrained extensions

Experimental Evaluation

The Packing Formulation

- Let \mathcal{F}_i be the set of all valid canonical d_i -flows for commodity i.
- $|\mathcal{F}_i|$ is exponential
- LP-relaxation can be solved in poly-time via multiplicative-weight updates (MWU)

Each commodity flow is expressed as a convex combination of flows in \mathcal{F}_i .

 x_i indicates whether to route commodity i

Theoretical Results

- (α,β) -approximation: A feasible solution with
 - $\geq \alpha$ fraction of the optimal throughput
 - $\leq \beta$ factor bound on largest congestion

Theorem: For $m \ge 9, \epsilon > 1/m$ there exists a polynomial time randomized algorithm that yields a $\left(1 - \epsilon, O\left(\frac{\ln m}{\ln \ln m}\right)\right)$ -approximation with high probability.

• Improves over $O\left(\frac{1}{3}, O(\sqrt{k \cdot \log n})\right)$ -approximation of [Liu et al., INFOCOM 2019]

The Compact Edge-Flow Formulation

- Polynomial size (polynomial # of variables)
- Yields easier randomized rounding
- Equivalence between the compact edgeflow and the packing formulations

given a feasible solution to one relaxed LP we can obtain a feasible solution to the other relaxation of the same flow and objective values, hence theoretical guarantees carry over!

 $\max\sum_{i=1}^{n} w_i f_i$ [Liu et al., INFOCOM 2019] $\sum f_{i,(s_i,v)} = f_i$ $\forall i \in [k]$ $(s_i, v) \in E$ $\sum f_{i,(u,v)} = \sum f_{i,(v,u)} \quad \forall i \in [k], \forall v \in V - \{s_i, t_i\}$ $(v,u) \in E$ $(u,v) \in E$ $f_{i,(u,v)} \cdot d_i \le c_{(u,v)}$ $\forall (u, v) \in E$ $f_{i,(u,v)} \cdot d_i \le f_i \cdot c_{(u,v)}$ $\forall i \in [k], \forall (u, v) \in E$ $f_{i,(u,v)} \ge 0$ $\forall i \in [k], \forall (u, v) \in E$ $f_i \in \{0, 1\}$ $\forall i \in [k]$

Randomized Rounding

- Simple to implement and fast
- Special case of randomized rounding for the packing formulation, so same bounds still apply.
- Derandomization:
 - Deterministic guarantees on approximation bounds
 - Much slower in practice than randomized rounding

Algorithm 1: Randomized Rounding Algorithm

- **Input** : Directed graph G(V, E) with edge capacities $c_e > 0, \forall e \in E$; set of k pairs of commodities (s_i, t_i) , each with demand $d_i \ge 0$ and weight $w_i \ge 0$; $\epsilon \in (0, 1]$
- **Output:** The final values of f_i and $f_{i,e}$ and $\sum w_i f_i$
- 1 Let $\tilde{f}_i, \tilde{f}_{i,e}, \forall i \in [k], \forall e \in E$, be a feasible solution to compact LP.
- 2 For each $i \in [k]$, independently, set $f_i = 1$ with probability \tilde{f}_i , otherwise set $f_i = 0$.
- **3** Rescale the fractional flow $\tilde{f}_{i,e}$ from the LP solution on edge e for commodity i by $\frac{1}{\tilde{f}_i}$: I.e., $f_{i,e} = \frac{\tilde{f}_{i,e}}{\tilde{f}_i} \cdot$ and the flow for commodity i on e is given by $f_{i,e}c$
- 4 If $\sum_{i} w_i f_i \ge (1 \epsilon) \sum w_i \tilde{f}_i$ and $\sum_{i} f_{i,e} d_i \le (3b \ln m / \ln \ln m)c(e)$ for all $e \in E$, return the corresponding flow assignments given by f_i and $f_{i,e}, \forall i \in [k]$ and $e \in E$. Otherwise, repeat steps 2 and 3, $O((\ln m)/\epsilon^2)$ times.

Solving the Relaxed LP

•	CPI	LEX:
•	CPI	LEX:

- Very fast
- Solves optimally
- Relatively high space complexity
- Multiplicative Weight Update (MWU):
 - Low Space Complexity
 - Solves the LP to arbitrarily high precision with a trade off with the running time
- Permutation Routing:
 - Very low space complexity
 - Fast heuristic based on MWU (slower than CPLEX)
 - Works well in practice

Inputs: Directed graph G(V,E), $c : E \to \mathbb{R}^+$, a set S of k pairs of commodities (s_i, t_i) each with demand d_i and $\gamma \in \mathbb{R}^+$ 1: Change G by adding dummy terminal s'_i and $edge(s'_i, s_i)$ with capacity d_i . This ensures that we don't route more than d_i units for pair *i*. We will assume this has been done and simply use (s_i, t_i) instead of (s'_i, t_i) **Output:** Total flow f_e on each *e*. $f(s'_i, s_i)/d_i$ gives the fraction of commodity *i* that is routed 2: Define a length/cost function $\ell : E \to \mathbb{R}^+$ and initialize $\ell_e \leftarrow 1, \forall e \in E$ 3: Define a function $f: E \to \mathbb{R}_{>0}$ and initialize $f_e \leftarrow 0, \forall e \in E$ 4: Define $\eta \leftarrow \frac{\ln |E|}{v}$ 5: repeat **for** each commodity $i \in S$ **do** 6: Compute min-cost flow of d_i units from s_i to t_i with capacities c(e) and cost given by ℓ . 7: (If no feasible flow then pair *i* can be dropped.) Let this flow be defined by $q_i(e), e \in E$ and let cost of this flow be $\rho(i) = \sum_{e} \ell(e)q_i(e)$ Set $i^* \leftarrow \operatorname{argmin}_{i \in S} \frac{\rho(i)}{w_i}$ Compute $\delta \leftarrow \min_{e} \frac{\gamma}{n} \cdot \frac{g_{i^*}(e)}{c(e)}$ 9: for each e do 10: Set $f_e \leftarrow f_e + \delta q_{i^*}(e)$ 11: if $f_e > c_e$ then 12: Output f and halt 13: else 14: Update $\ell_e \leftarrow \exp(\eta f_e/c_e)$ 15: 16: until termination

Algorithm 1: MWU for Multi-Commodity ANF Problem

Algorithmic Architecture

Experimental Design

- Germany50 network from SNDlib.
 - Relatively large compared to other networks, with many commodities.
- Execute all combinations of LP solvers and algorithms for integral solutions under various parameters.
- For each experiment, compute:
 - Throughput ratio $\alpha = \frac{Output \ of \ Experiment}{Optimal \ LP \ Solution}$
 - Edge capacity violation ration $\beta = \max_{e \in E} \left(\sum_{i=1}^{k} f_i(e) / c(e) \right)$
- Note that recorded $\alpha > 1$ is possible since $\beta > 1$.

Experimental Results & Findings

Vertices: 50, Edges: 176, Commodities: 662

Future Work

Experiments on larger networks (for which CPLEX fails)

Experiments with packing formulation extensions

Improved Randomized Rounding Performance via resampling techniques (Lovasz-Local-Lemma)