Flexibility can hurt dynamic matching system performance

<u>Arnaud Cadas</u>¹² Josu Doncel²³ Ana Bušić¹² Jean-Michel Fourneau⁴

¹DI ENS, CNRS, PSL Research University, Paris, France
²Inria, Paris, France.
³University of the Basque Country, UPV-EHU, Leioa, Spain.
⁴DAVID, UVSQ, University of Paris-Saclay, Versailles, France.

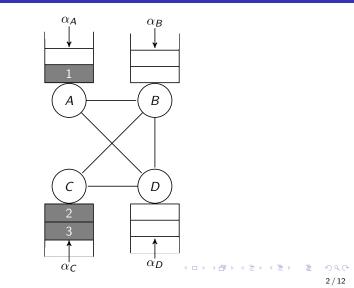
Performance 2021 Politecnico di Milano, Italy

8-12th November 2021

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへで

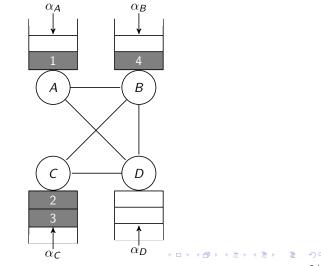
Example Contributions Related work Formal model

General stochastic matching model under FCFM policy



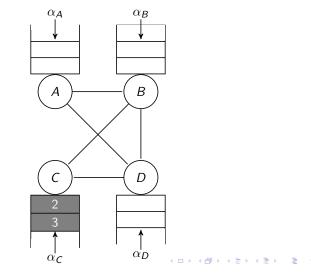
Example Contributions Related work Formal model

General stochastic matching model under FCFM policy



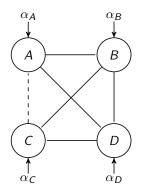
Example Contributions Related work Formal model

General stochastic matching model under FCFM policy



Example Contributions Related work Formal model

Contributions



- A closed-form expression for the expected total number of items remaining in the system.
- Sufficient conditions for the existence or the non-existence of a performance paradox in general stochastic matching models under heavy-traffic conditions.

Example Contributions Related work Formal model

Related work on general stochastic matching models

Stability

• [MM16] J. Mairesse and P. Moyal. *Stability of the stochastic matching model.* J. Appl. Probab., 2016.

FCFM

- [CKW09] R. Caldentey, E. Kaplan, G. Weiss. *FCFS infinite bipartite matching of servers and customers*. Adv. Appl. Probab., 2009.
- [AW12] I. Adan and G. Weiss. *Exact FCFS matching rates for two infinite multitype sequences*. Operations Research, 2012.
- [ABMW18] I. Adan, A. Bušić, J. Mairesse and G. Weiss. *Reversibility and further properties of FCFS infinite bipartite matching.* Math. Oper. Res., 2018.
- [MBM21] P. Moyal, A. Bušić and J. Mairesse. A product form for the general stochastic matching model. J. Appl. Probab., 2021.

Connected non-bipartite compatibility graph: $\mathcal{G} = (\mathcal{V}, \xi)$. Arrivals of items of different classes follow independant Poisson processes, rate λ_i for class *i*.

After uniformization: discrete time model with at most one arrival per time step. Item class distribution: $\alpha = (\alpha_i)_{i \in \mathcal{V}}$ and α_0 for zero arrivals.

The policy used is First Come First Matched.

The dynamics of the system is modeled with a Markov chain $W = (W_t)_{t \in \mathbb{N}}$ where a state is represented by a word $w = w_1 \cdots w_q$.

Example Contributions Related work Formal model

A subset of nodes $\mathcal{I} \subseteq \mathcal{V}$ is called an *independent set* if there is no edge between any two nodes in \mathcal{I} , i.e. for any $i, j \in \mathcal{I}$, $(i, j) \notin \xi$. Let \mathbb{I} be the set of independent sets of \mathcal{G} . Necessary and sufficient conditions for stability [MBM21]:

$$|\alpha_{\mathcal{I}}| < |\alpha_{\mathcal{E}(\mathcal{I})}|, \quad \forall \mathcal{I} \in \mathbb{I}.$$

where $|\alpha_V| = \sum_{i \in V} \alpha_i$, $\mathcal{E}(V) = \bigcup_{i \in V} \mathcal{E}(i)$ and $\mathcal{E}(i) = \{j \in \mathcal{V} : (i, j) \in \xi\}$ for any $V \in \mathcal{V}$.

Expected value

Proposition

Let $\mathbb{E}[Q]$ be the expected stationary total number of items:

$$\mathbb{E}[Q] = \left(\sum_{\mathcal{I} \in \mathbb{I}} \sum_{\sigma \in \mathfrak{S}_{|\mathcal{I}|}} \sum_{l=1}^{|\mathcal{I}|} \frac{|\alpha_{\mathcal{E}(\mathcal{I}_l^{\sigma})}|}{|\alpha_{\mathcal{E}(\mathcal{I}_l^{\sigma})}| - |\alpha_{\mathcal{I}_l^{\sigma}}|} \prod_{k=1}^{|\mathcal{I}|} \frac{\alpha_{i_{\sigma(k)}}}{|\alpha_{\mathcal{E}(\mathcal{I}_k^{\sigma})}| - |\alpha_{\mathcal{I}_k^{\sigma}}|}\right) \times \left(1 + \sum_{\mathcal{I} \in \mathbb{I}} \sum_{\sigma \in \mathfrak{S}_{|\mathcal{I}|}} \prod_{k=1}^{|\mathcal{I}|} \frac{\alpha_{i_{\sigma(k)}}}{|\alpha_{\mathcal{E}(\mathcal{I}_k^{\sigma})}| - |\alpha_{\mathcal{I}_k^{\sigma}}|}\right)^{-1}$$

where $\mathfrak{S}_{|\mathcal{I}|}$ is the set of all permutations of \mathcal{I} and $\mathcal{I}_{k}^{\sigma} = (i_{\sigma(1)}, \cdots, i_{\sigma(k)})$ the first k elements of the σ permutation of \mathcal{I} .

Heavy-traffic conditions Paradox Example

Heavy-traffic conditions

For any $\mathcal{I} \in \mathbb{I}$, denote by $|W_t|_{\mathcal{I}} = \sum_{i \in \mathcal{I}} |W_t|_i$, $t \ge 0$ and

$$\Delta_{\mathcal{I}} = |\alpha_{\mathcal{E}(\mathcal{I})}| - |\alpha_{\mathcal{I}}|.$$

Under FCFM policy, for any $t \ge 0$, we have

$$\mathbb{E}[|W_{t+1}|_{\mathcal{I}}-|W_t|_{\mathcal{I}}]\geq -\Delta_{\mathcal{I}},$$

Let

$$\bar{\delta} = \min_{\mathcal{I} \in \mathbb{I}} \Delta_{\mathcal{I}} = \min_{\mathcal{I} \in \mathbb{I}} (|\alpha_{\mathcal{E}(\mathcal{I})}| - |\alpha_{\mathcal{I}}|).$$

We select a bottleneck set $\hat{\mathcal{I}}\in \mathsf{arg\,min}_{\mathcal{I}\in\mathbb{I}}\,\Delta_{\mathcal{I}}$ with the highest cardinality, i.e.

$$\hat{\mathcal{I}}| = \max_{\mathcal{I} \in \mathbb{I} \text{ s.t. } \Delta_{\mathcal{I}} = \overline{\delta}} |\mathcal{I}|.$$

10/12

Heavy-traffic conditions Paradox Example

Heavy-traffic conditions

We define a parameterized family of item class distributions:

$$\alpha_{i}^{\delta} = \begin{cases} \alpha_{i} + \frac{\bar{\delta}}{2} \frac{\alpha_{i}}{|\alpha_{\hat{\mathcal{I}}}|} - \frac{\delta}{2} \frac{\alpha_{i}}{|\alpha_{\hat{\mathcal{I}}}|} & \text{if } i \in \hat{\mathcal{I}} \\ \alpha_{i} - \frac{\bar{\delta}}{2} \frac{\alpha_{i}}{|\alpha_{\mathcal{E}(\hat{\mathcal{I}})}|} + \frac{\delta}{2} \frac{\alpha_{i}}{|\alpha_{\mathcal{E}(\hat{\mathcal{I}})}|} & \text{if } i \in \mathcal{E}(\hat{\mathcal{I}}) \\ \alpha_{i} & \text{otherwise} \end{cases}$$

for all $0 < \delta \leq \overline{\delta}$, such that $\Delta_{\hat{\mathcal{I}}}^{\delta} = \delta$.

Heavy-traffic conditions Paradox Example

Performance paradox

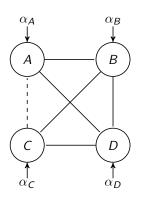
Let $\tilde{\mathcal{G}} = (\mathcal{V}, \tilde{\xi})$ be the compatibility graph with the added edge (i^*, j^*) , i.e $\tilde{\xi} = \xi \cup \{(i^*, j^*)\}$.

Theorem

- If Î has both i* and j* as neighbors, then there exists a performance paradox for δ sufficiently small.
- If Î contains i* or j* and E(Î) ⊊ E(Î), then there does not exist a performance paradox for δ sufficiently small.

Heavy-traffic conditions Paradox Example

Example of a performance paradox



Let
$$\alpha_A = \alpha_C = 0.22$$
, $\alpha_B = 0.45$ and $\alpha_D = 0.11$.

We have $\bar{\delta} = \Delta_{\{B\}} = |\alpha_{\{A,C,D\}}| - |\alpha_B| = 0.1.$ We define α^{δ} based on the bottleneck set $\hat{\mathcal{I}} = \{B\}$, for all $0 < \delta \leq 0.1$, i.e $\alpha_A^{\delta} = \alpha_C^{\delta} = 0.2 + \frac{\delta}{5}, \ \alpha_B^{\delta} = 0.5 - \frac{\delta}{2}$ and $\alpha_D^{\delta} = 0.1 + \frac{\delta}{10}.$

In addition, we have $\mathbb{E}[\widetilde{Q}] > \mathbb{E}[Q]$ for all $0 < \delta \le 0.0818369$.

イロト イヨト イヨト