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General stochastic matching model

Formal m

Contributions

° e @ A closed-form expression for the
expected total number of items
remaining in the system.

o Sufficient conditions for the existence
or the non-existence of a performance
paradox in general stochastic matching
models under heavy-traffic conditions.
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General stochastic matching model

Connected non-bipartite compatibility graph: G = (V,€).

Arrivals of items of different classes follow independant Poisson
processes, rate \; for class i.

After uniformization: discrete time model with at most one arrival
per time step. ltem class distribution: o = («;)jcy and «q for zero
arrivals.

The policy used is First Come First Matched.

The dynamics of the system is modeled with a Markov chain

W = (W;)ten where a state is represented by a word

W= W W
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General stochastic matching model

A subset of nodes Z C V is called an independent set if there is no
edge between any two nodes in Z, i.e. for any i,j € Z, (i,j) ¢ &.
Let I be the set of independent sets of G.

Necessary and sufficient conditions for stability [MBM21]:

laz| <lag)l, VI el

where |ay| =Y cy i, E(V) = Uey (i) and
EN)={jeV:(ij) e} forany Ve.
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Expected total number of unmatched items

Expected value

Let E[Q] be the expected stationary total number of items:

| o |
&(zy)
E[Q] =
le:HUEEG:H IE:; | 5(Z”)| - |aZU| H |Olg Icr)| — |aIa|
>y Il h
x| 1+
IE]IcreGm k=1 | g(l'cr)| - |O{IU’
where 6|I| is the set of all permutations of 7 and
I7 = (io(1),*** » io(k)) the first k elements of the o permutation of

7.
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Heavy-traffic conditions

For any 7 € I, denote by |W;|z = > ;cr |We|i, t > 0 and
Az = |agp| — lazl.
Under FCFM policy, for any t > 0, we have
E[[Wiialz — [Welz] = —Ag,

Let
5 = min A —mlna — o
min Az = min(lag)| — lozl).
We select a bottleneck set 7 € arg minzcp Az with the highest

cardinality, i.e.

17| = max _|Z|.
7€l s.t. AI:(S
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Heavy-traffic conditions

We define a parameterized family of item class distributions:

TR - TR e £ e T
) o + 2Tzl 2fag] ifie’l
_ O _aj d  «j o 7
a. _— o — < 1 v 1
' i STyl T 2Tagg T1EEE)
o otherwise

for all 0 < § < §, such that Ag = 4.
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Performance paradox Example

Performance paradox

Let G = (v,j) be the compatibility graph with the added edge
(i*,J"). ie &£ =EU{(i",j")}-

o If1 has both i* and j* as neighbors, then there exists a
performance paradox for § sufficiently small.

~ A

o If 1 contains i* or j* and E(Z) C E(Z), then there does not
exist a performance paradox for § sufficiently small.
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Example of a performance paradox

Let ap = ac = 0.22, ag = 0.45 and
ap = 0.11.

\_/Ve have
0 = Agpy = |agacpy| — leg| = 0.1.
We define o® based on the bottleneck
set Z ={B}, forall0 <0 <0.1, i.e
o =al=0242 ad=05-2

A C . 5 &p . 2

h) 5

and ap = 0.1 + .

A

o W

In addition, we have E[é] > E[Q]
for all 0 < 6 < 0.0818369.

ac
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