
Simultaneously Achieving Sublinear Regret and Constraint
Violations for Online Convex Optimization with Time-varying

Constraints

Qingsong Liu, Wenfei Wu, Longbo Huang, Zhixuan Fang
IIIS, Tsinghua University

Performance 2021

1

Outline

• Motivation
• Problem formulation
• Related works
• Algorithm
• Main results
• Simulation

2

Motivation

• Online network routing
• Online network resources allocation
• Online job scheduling
• Online fog computation offloading

3

A diagram of online fog computation offloading

A diagram of online network resources allocation

Problem formulation

• Model :
• At round 𝑡, the agent makes a decision 𝑥! ∈ 𝜒
• Incurs a loss function 𝑓! and a constraint function 𝒈!
• 𝑓! and 𝒈! are time-varying, where 𝒈! = [𝑔!,# 𝑡 , … , 𝑔!,$(𝑡)]%
• Revealed after the decision making

• Goal :

4

Problem formulation

• Model :
• At round 𝑡, the agent makes a decision 𝑥! ∈ 𝜒
• Incurs a loss function 𝑓! and a constraint function 𝒈!
• 𝑓! and 𝒈! are time-varying, where 𝒈! = [𝑔!,# 𝑡 , … , 𝑔!,$(𝑡)]%
• Revealed after the decision making

• Goal :

• Challenging in the online setting

5

Related works

• [Chen et al., 2017, Chen et al., 2018, Cao and Liu, 2019, Chen and
Giannakis, 2019]
• Based on the modified online saddle-point (MOSP) methed
• Assume the Slater condition holds
• Cannot guarantee simultaneous sublinear regret (R) and constraint violations (C)

6

Related works

• [Chen et al., 2017, Chen et al., 2018, Cao and Liu, 2019, Chen and
Giannakis, 2019]
• Based on the modified online saddle-point (MOSP) methed
• Assume the Slater condition holds
• Cannot guarantee simultaneous sublinear regret (R) and constraint violations (C)

• [Cao and Liu, 2019] :
• The only one work that can achieve simultaneous R&C without the Slater condition
• not parameter-free, i.e., the parameters in their algorithm require the prior

information of the environments

7

Related works

• [Chen et al., 2017, Chen et al., 2018, Cao and Liu, 2019, Chen and
Giannakis, 2019]
• Based on the modified online saddle-point (MOSP) methed
• Assume the Slater condition holds
• Cannot guarantee simultaneous sublinear regret (R) and constraint violations (C)

• [Cao and Liu, 2019] :
• The only one work that can achieve simultaneous R&C without the Slater condition
• not parameter-free, i.e., the parameters in their algorithm require the prior

information of the environments

Non of the parameter-free methods can
guarantee the sublinear regret and
constraint violations simultaneously

8

Metrics

• Benchmark: per-slot minimizers {𝑥!∗}
𝑥!∗ = argmin

'∈)
{𝑓!(𝑥)|𝒈!(𝑥) ≤ 𝟎}

• Dynamic regret

Regret 𝑇 =>
!*#

%

𝑓!(𝑥!) −>
!*#

%

𝑓!(𝑥!∗)

• Constraint violations

Vio$ =>
!*#

%

𝑔$,!(𝑥!) , 𝑘 = 1,2, … , 𝐾.

9

Metrics

• Benchmark: per-slot minimizers {𝑥!∗}
𝑥!∗ = argmin

'∈)
{𝑓!(𝑥)|𝒈!(𝑥) ≤ 𝟎}

• Dynamic regret

Regret 𝑇 =>
!*#

%

𝑓!(𝑥!) −>
!*#

%

𝑓!(𝑥!∗)

• Constraint violations

Vio$ =>
!*#

%

𝑔$,!(𝑥!) , 𝑘 = 1,2, … , 𝐾.

Note: dynamic regret is more meaningful
in dynamic environments

10

Regularities

• Quantifying the temporal variations of functions sequence (or environment)
• Two main kinds of regularities [Chen et al., 2018, Yi et al., 2020]

• Path-length: the accumulated variation of per-slot minimizers {𝑥!∗}

𝑉' =>
!*+

%

||𝑥!∗ − 𝑥!,#∗ ||

• Function variation: the accumulated variation of consecutive constraints

𝑉𝒈 =>
!*+

%

max
'∈)

||𝒈! 𝑥 − 𝒈!,#(𝑥)||

11

Assumptions

• The feasible set 𝜒 is closed, convex, and bounded with diameter 𝑅, i.e.,
• | 𝑥 − 𝑦 | ≤ 𝑅, ∀𝑥, 𝑦 ∈ 𝜒.

• 𝑓! and 𝒈! are convex, and bounded by 𝐹 on 𝜒, i.e.,
• max
'∈)

{|𝑓! 𝑥 |, ||𝒈! 𝑥 ||} ≤ 𝐹, ∀𝑡.

• ∇𝑓! and ∇𝑔#,! are bounded by 𝐺over 𝜒, i.e.,
• max
'∈)

{||∇𝑓! 𝑥 ||, ||∇𝑔$,! 𝑥 ||} ≤ 𝐹, ∀𝑘, 𝑡.

12

Algorithm

• We introduces a sequence of dual variables {𝝀 𝑡 } (also called virtual queues)
• To characterize the regret and constraint violations through the drift-plus-penalty expression
• analyze the regret and constraint violations based on it

13

Algorithm

• If there are no constraints 𝒈! (i.e., 𝒈! = 𝟎)
• 𝝀(𝑡) = 𝟎

14

Algorithm

• If there are no constraints 𝒈! (i.e., 𝒈! = 𝟎)
• 𝝀(𝑡) = 𝟎
• Update rule of 𝑥!.# is equivalent to

15VQB reduces to OGD algorithm if there is no constraints

Algorithm

• Define virtual queue backlogs:
𝐐(t) = 𝝀 𝑡 + 𝛾!,#𝒈!,# 𝑥! = max{𝝀 𝑡 − 1 + 2𝛾!,#𝒈!,# 𝑥! , 0}

• Define Lyapunov drift: ∆ 𝑡 = #
+ ||𝑸 𝑡 + 1 ||+ − #

+ ||𝑸 𝑡 + 1 ||+

16

Algorithm

• Define virtual queue backlogs:
𝐐(t) = 𝝀 𝑡 + 𝛾!,#𝒈!,# 𝑥! = max{𝝀 𝑡 − 1 + 2𝛾!,#𝒈!,# 𝑥! , 0}

• Define Lyapunov drift: ∆ 𝑡 = #
+ ||𝑸 𝑡 + 1 ||+ − #

+ ||𝑸 𝑡 + 1 ||+

• Intuition: choose 𝑥!.# to minimize an upper bound of the following expression

Minimize penalty plus the
Lyapunov drift

17

Algorithm

• Define virtual queue backlogs:
𝐐(t) = 𝝀 𝑡 + 𝛾!,#𝒈!,# 𝑥! = max{𝝀 𝑡 − 1 + 2𝛾!,#𝒈!,# 𝑥! , 0}

• Define Lyapunov drift: ∆ 𝑡 = #
+ ||𝑸 𝑡 + 1 ||+ − #

+ ||𝑸 𝑡 + 1 ||+

• Intuition: choose 𝑥!.# to minimize an upper bound of the following expression

Since 𝑥!.# has been determined, we replace
𝒈!(𝑥!.#) with 𝒈!(𝑥!.#) in ∆(𝑡) and omit the

constant term 18

Algorithm

• Intuition: choose 𝑥!.# to minimize an upper bound of the following expression (i.e., to
minimize the penalty plus the Lyapunov drift)

• The drift term ∆(𝑡):
• evaluate the constraint violations and is closed related to the virtual queues

19

Algorithm

• Intuition: choose 𝑥!.# to minimize an upper bound of the following expression (i.e., to
minimize the penalty plus the Lyapunov drift)

• The drift term ∆(𝑡):
• evaluate the constraint violations and is closed related to the virtual queues

• The regularization term ||𝑥! − 𝑥!,#||+:
• smoothen the difference between the coherent actions

20

Algorithm

• Intuition: choose 𝑥!.# to minimize an upper bound of the following expression (i.e., to
minimize the penalty plus the Lyapunov drift)

• The drift term ∆(𝑡):
• evaluate the constraint violations and is closed related to the virtual queues

• The regularization term ||𝑥! − 𝑥!,#||+:
• smoothen the difference between the coherent actions

• The remaining term ∇𝑓!(𝑥!)%(𝑥 − 𝑥!):
• describes the optimization problem

21

• Updating dual variables based on virtual queues
• [Yu and Neely, 2020]: time-invariant constrains, static regret
• [Qiu and Wei, 2020]: time-invariant constrains, static regret, parameter-dependent

• Our algorithm VQB differs in
• Design a new way of involving instantaneous per-slot constraint violation into the

virtual queues and decision sequence update for the time-varying constraints setting
• The learning rates of our algorithm, i.e., 𝛼! and 𝛾! are time-varying

Comparison

22

• Without the slater condition:

Main results

23

Theorem 1:

(i) Set 𝛼! =
"

#$∑!"# ||'!
∗('!%&

∗ ||
, 𝛾! = 𝑂()

*#
), we have

Regret 𝑇 ≤ 𝑂 max 𝑇𝑉', 𝑉+ ,
Vio, ≤ 𝑂 max 𝑇, 𝑉+ , ∀ 𝑘 = 1,2, … , 𝐾.

(ii) Set 𝛼! =
"

#$∑!"# ||'!
∗('!%&

∗ || , 𝛾! = 𝑂()
*#

)
!$)), we have

Regret 𝑇 ≤ 𝑂 𝑇𝑉' ,

Vio, ≤ 𝑂 max 𝑇
-
., 𝑉+ , ∀ 𝑘 = 1,2, … , 𝐾.

• The variation of consecutive constraints is smooth across time (Slater
condition) in many practical constrained OCO problems [Chen et al., 2017]
• Question: Whether the Slater condition can lead to better bounds of constraint

violations for VQB

Main results

24

• With the slater condition:

Main results

25

Theorem 2: Set 𝛼! = 𝑂 𝑇 , 𝛾! = 𝑂(𝑇
&
'), we have

Regret 𝑇 ≤ 𝑂 max 𝑇𝑉', 𝑇𝑉+ ,

Vio, ≤ 𝑂 1 , ∀ 𝑘 = 1,2, … , 𝐾.

The 𝑂(1) bound of constraint violations is achieved

• Sublinear regret and constraint violations simultaneously

Comparison

26

• Matches the state-of-the-art dynamic regret bound 𝑂(𝑇𝑉@) in classic OCO,
when the path-length of the benchmark sequence is 𝑉@

Comparison

27

• Theorem 1 (case 1): the regret and constraint violations bounds are all no
worse than the state-of-the-art results when 𝑉@ is not too large

Comparison

28

• Theorem 1 (Case 2): the regret bound outperforms all existing works

Comparison

29

• Theorem 2: the bound of constraint violations outperforms all existing works

Comparison

30

• Parameter-free, that is, the parameters in our algorithm do not require prior
information of the regularities (e.g., 𝑉@ or 𝑉A)

Comparison

31

• Holds no matter whether the Slater condition holds or not

Comparison

32

• Connections to queue systems stability.
• Create a real queue 𝑸(𝑡) to keep track of the “debt” to constraints up to round 𝑡

• 𝑸 𝑡 = 𝟎, 𝐐 t = [𝐐 t − 1 + 𝒈! 𝑥!]$ = [∑/0)! 𝒈/(𝑥/)]$

Insight

33

• Connections to queue systems stability.
• Create a real queue 𝑸(𝑡) to keep track of the “debt” to constraints up to round 𝑡

• 𝑸 𝑡 = 𝟎, 𝐐 t = [𝐐 t − 1 + 𝒈! 𝑥!]$ = [∑/0)! 𝒈/(𝑥/)]$

• Sublinear constraint violations means the real queue system {𝑸 𝑡 }mean rate stable
[Neely, 2010], i.e.,

lim
"→2

| 𝑸 𝑇 |
𝑇

= 0

• 𝑂(1) constraint violations is sufficient to show the real queue system {𝑸 𝑡 }
strongly stable [Neely, 2010], i.e.,

lim
"→2

∑!0)" | 𝑸 𝑡 |
𝑇

≤ B < ∞

Insight

34

• Baselines [8, 3, 11, 9]:
• [Chen et al., 2017, Chen et al., 2018, Cao and Liu, 2019, Chen and Giannakis, 2019]

Simulation

35

• Baselines [8, 3, 11, 9]:
• [Chen et al., 2017, Chen et al., 2018, Cao and Liu, 2019, Chen and Giannakis, 2019]

• Setting 1: 𝑉@ = 𝑉𝒈 = 𝑂(ln 𝑇)

Simulation

36

• Setting 2: 𝑉@ = 𝑉𝒈 = 𝑂(𝑇)

Simulation

37

Q & A

38

Thanks!

