Simultaneously Achieving Sublinear Regret and Constraint Violations for Online Convex Optimization with Time-varying Constraints

Qingsong Liu, Wenfei Wu, Longbo Huang, Zhixuan Fang

IIIS, Tsinghua University

Performance 2021

Wenfei Wu

Longbo Huang

Zhixuan Fang

1

Outline

- Motivation
- Problem formulation
- Related works
- Algorithm
- Main results
- Simulation

Motivation

- Online network routing
- Online network resources allocation
- Online job scheduling
- Online fog computation offloading

A diagram of online fog computation offloading

A diagram of online network resources allocation

Problem formulation

- Model :
 - At round t, the agent makes a decision $x_t \in \chi$
 - Incurs a loss function f_t and a constraint function \boldsymbol{g}_t
 - f_t and \boldsymbol{g}_t are time-varying, where $\boldsymbol{g}_t = [g_{t,1}(t), \dots, g_{t,k}(t)]^T$
 - Revealed after the decision making
- Goal :

$$\min_{\{x_t\}_{t=1}^T} \sum_{t=1}^T f_t(x_t), \ s.t. \ \sum_{t=1}^T \boldsymbol{g}_t(x_t) \le \boldsymbol{0}.$$
(P1)

Problem formulation

- Model :
 - At round t, the agent makes a decision $x_t \in \chi$
 - Incurs a loss function f_t and a constraint function \boldsymbol{g}_t
 - f_t and \boldsymbol{g}_t are time-varying, where $\boldsymbol{g}_t = [g_{t,1}(t), \dots, g_{t,k}(t)]^T$
 - Revealed after the decision making
- Goal: $\min_{\{x_t\}_{t=1}^T} \sum_{t=1}^T f_t(x_t), \ s.t. \ \sum_{t=1}^T g_t(x_t) \le \mathbf{0}.$ (P1)
- Challenging in the online setting

Related works

- [Chen et al., 2017, Chen et al., 2018, Cao and Liu, 2019, Chen and Giannakis, 2019]
 - Based on the modified online saddle-point (MOSP) methed
 - Assume the Slater condition holds
 - Cannot guarantee simultaneous sublinear regret (R) and constraint violations (C)

Related works

- [Chen et al., 2017, Chen et al., 2018, Cao and Liu, 2019, Chen and Giannakis, 2019]
 - Based on the modified online saddle-point (MOSP) methed
 - Assume the Slater condition holds
 - Cannot guarantee simultaneous sublinear regret (R) and constraint violations (C)
- [Cao and Liu, 2019] :
 - The only one work that can achieve simultaneous R&C without the Slater condition
 - not parameter-free, i.e., the parameters in their algorithm require the prior information of the environments

Related works

- [Chen et al., 2017, Chen et al., 2018, Cao and Liu, 2019, Chen and Giannakis, 2019]
 - Based on the modified online saddle-point (MOSP) methed
 - Assume the Slater condition holds
 - Cannot guarantee simultaneous sublinear regret (R) and constraint violations (C)
- [Cao and Liu, 2019] :
 - The only one work that can achieve simultaneous R&C without the Slater condition
 - not parameter-free, i.e., the parameters in their algorithm require the prior information of the environments

Non of the parameter-free methods can guarantee the sublinear regret and constraint violations simultaneously

- Benchmark: per-slot minimizers $\{x_t^*\}\ x_t^* = \arg\min_{x \in \chi} \{f_t(x) | g_t(x) \le 0\}$
- Dynamic regret

Regret(T) =
$$\sum_{t=1}^{T} f_t(x_t) - \sum_{t=1}^{T} f_t(x_t^*)$$

• Constraint violations

$$\operatorname{Vio}_{k} = \sum_{t=1}^{T} g_{k,t}(x_{t}), k = 1, 2, ..., K.$$

- Benchmark: per-slot minimizers $\{x_t^*\}\ x_t^* = \arg\min_{x \in \chi} \{f_t(x) | g_t(x) \le 0\}$
- Dynamic regret

Regret(T) =
$$\sum_{t=1}^{T} f_t(x_t) - \sum_{t=1}^{T} f_t(x_t^*)$$

• Constraint violations

$$\operatorname{Vio}_{k} = \sum_{t=1}^{T} g_{k,t}(x_{t}), k = 1, 2, ..., K.$$

Note: dynamic regret is more meaningful in dynamic environments

Regularities

- Quantifying the temporal variations of functions sequence (or environment)
- Two main kinds of regularities [Chen et al., 2018, Yi et al., 2020]
 - Path-length: the accumulated variation of per-slot minimizers $\{x_t^*\}$

$$V_x = \sum_{t=2}^{T} ||x_t^* - x_{t-1}^*||$$

• Function variation: the accumulated variation of consecutive constraints

$$V_{g} = \sum_{t=2}^{\infty} \max_{x \in \chi} ||g_{t}(x) - g_{t-1}(x)||$$

Assumptions

- The feasible set χ is closed, convex, and bounded with diameter R, i.e.,
 - $||x y|| \le R, \forall x, y \in \chi.$
- f_t and \boldsymbol{g}_t are convex, and bounded by F on χ , i.e.,
 - $\max_{x \in \chi} \{ |f_t(x)|, ||\boldsymbol{g}_t(x)|| \} \le F, \forall t.$
- ∇f_t and $\nabla g_{k,t}$ are bounded by *G*over χ , i.e.,
 - $\max_{x \in \chi} \{ ||\nabla f_t(x)||, ||\nabla g_{k,t}(x)|| \} \le F, \forall k, t.$

Algorithm 1 VQB

- 1: **Initialize**: $\alpha_1, \gamma_0 > 0, \ \boldsymbol{g}_0 = \boldsymbol{\lambda}(0) = 0, \text{ and } x_1 \in \boldsymbol{\chi}.$
- 2: **for** round t = 1...T 1 **do**
- 3: Update the dual iterate $\lambda(t)$:
- 4: $\lambda(t) = \max\{\lambda(t-1) + \gamma_{t-1}\boldsymbol{g}_{t-1}(x_t), -\gamma_{t-1}\boldsymbol{g}_{t-1}(x_t)\}$
- 5: Update the primal iterate that satisfies:
- 6: $x_{t+1} = \arg \min_{x \in \chi} \nabla f_t(x_t)^T (x x_t) + [\lambda(t) + \gamma_{t-1} g_{t-1}(x_t)]^T (\gamma_t g_t(x)) + \alpha_t ||x x_t||^2$
- 7: Choose the action x_{t+1}

8: **end for**

- We introduces a sequence of dual variables $\{\lambda(t)\}$ (also called virtual queues)
 - To characterize the regret and constraint violations through the drift-plus-penalty expression
 - analyze the regret and constraint violations based on it

Algorithm 1 VQB

- 1: **Initialize**: $\alpha_1, \gamma_0 > 0, \ \boldsymbol{g}_0 = \lambda(0) = 0$, and $x_1 \in \chi$.
- 2: **for** round t = 1...T 1 **do**
- 3: Update the dual iterate $\lambda(t)$:
- 4: $\lambda(t) = \max\{\lambda(t-1) + \gamma_{t-1}\boldsymbol{g}_{t-1}(x_t), -\gamma_{t-1}\boldsymbol{g}_{t-1}(x_t)\}$
- 5: Update the primal iterate that satisfies:
- 6: $x_{t+1} = \arg \min_{x \in \chi} \nabla f_t(x_t)^T (x x_t) + [\lambda(t) + \gamma_{t-1} g_{t-1}(x_t)]^T (\gamma_t g_t(x)) + \alpha_t ||x x_t||^2$
- 7: Choose the action x_{t+1}

8: **end for**

- If there are no constraints \boldsymbol{g}_t (i.e., $\boldsymbol{g}_t = \boldsymbol{0}$)
 - $\lambda(t) = \mathbf{0}$

Algorithm 1 VQB

- 1: **Initialize**: $\alpha_1, \gamma_0 > 0$, $\boldsymbol{g}_0 = \lambda(0) = 0$, and $x_1 \in \chi$.
- 2: **for** round t = 1...T 1 **do**
- 3: Update the dual iterate $\lambda(t)$:
- 4: $\lambda(t) = \max\{\lambda(t-1) + \gamma_{t-1}\boldsymbol{g}_{t-1}(x_t), -\gamma_{t-1}\boldsymbol{g}_{t-1}(x_t)\}$
- 5: Update the primal iterate that satisfies:
- 6: $x_{t+1} = \arg \min_{x \in \chi} \nabla f_t(x_t)^T (x x_t) + [\lambda(t) + \gamma_{t-1} g_{t-1}(x_t)]^T (\gamma_t g_t(x)) + \alpha_t ||x x_t||^2$
- 7: Choose the action x_{t+1}

8: **end for**

- If there are no constraints ${m g}_t$ (i.e., ${m g}_t={m 0}$)
 - $\lambda(t) = \mathbf{0}$
 - Update rule of x_{t+1} is equivalent to

$$x_{t+1} = \arg\min_{x \in \chi} \nabla f_t(x_t)^T (x - x_t) + \alpha_t ||x - x_t||^2 = \prod_{\chi} (x_t - \frac{1}{2\alpha_t} \nabla f_t(x_t)).$$

VQB reduces to OGD algorithm if there is no constraints

Update the primal iterate that satisfies: $x_{t+1} = \arg \min_{x \in \chi} \nabla f_t(x_t)^T (x - x_t) + [\lambda(t) + \gamma_{t-1} \mathbf{g}_{t-1}(x_t)]^T (\gamma_t \mathbf{g}_t(x)) + \alpha_t ||x - x_t||^2$

Define virtual queue backlogs:

$$\mathbf{Q}(t) = \lambda(t) + \gamma_{t-1} g_{t-1}(x_t) = \max\{\lambda(t-1) + 2\gamma_{t-1} g_{t-1}(x_t), 0\}$$

• Define Lyapunov drift: $\Delta(t) = \frac{1}{2} || \boldsymbol{Q}(t+1) ||^2 - \frac{1}{2} || \boldsymbol{Q}(t+1) ||^2$

Update the primal iterate that satisfies: $x_{t+1} = \arg \min_{x \in \chi} \nabla f_t(x_t)^T (x - x_t) + [\lambda(t) + \gamma_{t-1} \mathbf{g}_{t-1}(x_t)]^T (\gamma_t \mathbf{g}_t(x)) + \alpha_t ||x - x_t||^2$

- Define virtual queue backlogs: $\mathbf{Q}(t) = \boldsymbol{\lambda}(t) + \gamma_{t-1}\boldsymbol{g}_{t-1}(x_t) = \max\{\boldsymbol{\lambda}(t-1) + 2\gamma_{t-1}\boldsymbol{g}_{t-1}(x_t), 0\}$
- Define Lyapunov drift: $\Delta(t) = \frac{1}{2} || \boldsymbol{Q}(t+1) ||^2 \frac{1}{2} || \boldsymbol{Q}(t+1) ||^2$
- Intuition: choose x_{t+1} to minimize an upper bound of the following expression

$$\underbrace{\Delta(t)}_{\text{drift}} + \underbrace{\nabla f_t(x_t)^T(x - x_t) + \alpha_t ||x - x_t||^2}_{\text{penalty}}.$$

Minimize penalty plus the Lyapunov drift

Update the primal iterate that satisfies: $x_{t+1} = \arg \min_{x \in \chi} \nabla f_t(x_t)^T (x - x_t) + [\lambda(t) + \gamma_{t-1} \mathbf{g}_{t-1}(x_t)]^T (\gamma_t \mathbf{g}_t(x)) + \alpha_t ||x - x_t||^2$

- Define virtual queue backlogs: $\mathbf{Q}(t) = \boldsymbol{\lambda}(t) + \gamma_{t-1}\boldsymbol{g}_{t-1}(x_t) = \max\{\boldsymbol{\lambda}(t-1) + 2\gamma_{t-1}\boldsymbol{g}_{t-1}(x_t), 0\}$
- Define Lyapunov drift: $\Delta(t) = \frac{1}{2} || \boldsymbol{Q}(t+1) ||^2 \frac{1}{2} || \boldsymbol{Q}(t+1) ||^2$
- Intuition: choose x_{t+1} to minimize an upper bound of the following expression

$$\underbrace{\Delta(t)}_{\text{drift}} + \underbrace{\nabla f_t(x_t)^T(x - x_t) + \alpha_t ||x - x_t||^2}_{\text{penalty}}.$$

Since x_{t+1} has been determined, we replace $g_t(x_{t+1})$ with $g_t(x_{t+1})$ in $\Delta(t)$ and omit the constant term

Update the primal iterate that satisfies: $x_{t+1} = \arg \min_{x \in \chi} \nabla f_t(x_t)^T (x - x_t) + [\lambda(t) + \gamma_{t-1} \mathbf{g}_{t-1}(x_t)]^T (\gamma_t \mathbf{g}_t(x)) + \alpha_t ||x - x_t||^2$

• Intuition: choose x_{t+1} to minimize an upper bound of the following expression (i.e., to minimize the penalty plus the Lyapunov drift)

$$\underbrace{\Delta(t)}_{\text{drift}} + \underbrace{\nabla f_t(x_t)^T (x - x_t) + \alpha_t ||x - x_t||^2}_{\text{penalty}}.$$

- The drift term $\Delta(t)$:
 - evaluate the constraint violations and is closed related to the virtual queues

Update the primal iterate that satisfies: $x_{t+1} = \arg \min_{x \in \chi} \nabla f_t(x_t)^T (x - x_t) + [\lambda(t) + \gamma_{t-1} \mathbf{g}_{t-1}(x_t)]^T (\gamma_t \mathbf{g}_t(x)) + \alpha_t ||x - x_t||^2$

• Intuition: choose x_{t+1} to minimize an upper bound of the following expression (i.e., to minimize the penalty plus the Lyapunov drift)

$$\underbrace{\Delta(t)}_{\text{drift}} + \underbrace{\nabla f_t(x_t)^T(x - x_t) + \alpha_t ||x - x_t||^2}_{\text{penalty}}.$$

- The drift term $\Delta(t)$:
 - evaluate the constraint violations and is closed related to the virtual queues
- The regularization term $||x_t x_{t-1}||^2$:
 - smoothen the difference between the coherent actions

Update the primal iterate that satisfies: $x_{t+1} = \arg \min_{x \in \chi} \nabla f_t(x_t)^T (x - x_t) + [\lambda(t) + \gamma_{t-1} \mathbf{g}_{t-1}(x_t)]^T (\gamma_t \mathbf{g}_t(x)) + \alpha_t ||x - x_t||^2$

• Intuition: choose x_{t+1} to minimize an upper bound of the following expression (i.e., to minimize the penalty plus the Lyapunov drift)

$$\underbrace{\Delta(t)}_{\text{drift}} + \underbrace{\nabla f_t(x_t)^T(x - x_t) + \alpha_t ||x - x_t||^2}_{\text{penalty}}.$$

- The drift term $\Delta(t)$:
 - evaluate the constraint violations and is closed related to the virtual queues
- The regularization term $||x_t x_{t-1}||^2$:
 - smoothen the difference between the coherent actions
- The remaining term $\nabla f_t(x_t)^T(x-x_t)$:
 - describes the optimization problem

- Updating dual variables based on virtual queues
 - [Yu and Neely, 2020]: time-invariant constrains, static regret
 - [Qiu and Wei, 2020]: time-invariant constrains, static regret, parameter-dependent
- Our algorithm VQB differs in
 - Design a new way of involving instantaneous per-slot constraint violation into the virtual queues and decision sequence update for the time-varying constraints setting
 - The learning rates of our algorithm, i.e., α_t and γ_t are time-varying

Main results

• Without the slater condition:

Theorem 1:
(i) Set
$$\alpha_t = \sqrt{\frac{T}{R + \sum_{i \le t} ||x_i^* - x_{i-1}^*||}}$$
, $\gamma_t = O(\frac{1}{\sqrt{2R}})$, we have
Regret $(T) \le O(\max\{\sqrt{TV_x}, V_g\})$,
 $\operatorname{Vio}_k \le O(\max\{\sqrt{T}, V_g\})$, $\forall k = 1, 2, ..., K$.
(ii) Set $\alpha_t = \sqrt{\frac{T}{R + \sum_{i \le t} ||x_i^* - x_{i-1}^*||}}$, $\gamma_t = O(\frac{1}{\sqrt{2R}}, \frac{1}{\sqrt{t+1}})$, we have
 $\operatorname{Regret}(T) \le O(\sqrt{TV_x})$,
 $\operatorname{Vio}_k \le O\left(\max\{T^{\frac{3}{4}}, V_g\}\right)$, $\forall k = 1, 2, ..., K$.

Main results

- The variation of consecutive constraints is smooth across time (Slater condition) in many practical constrained OCO problems [Chen et al., 2017]
 - Question: Whether the Slater condition can lead to better bounds of constraint violations for VQB

Main results

• With the slater condition:

Theorem 2: Set
$$\alpha_t = O(\sqrt{T})$$
, $\gamma_t = O(T^{\frac{1}{4}})$, we have
 $\operatorname{Regret}(T) \leq O\left(\max\left\{\sqrt{TV_x}, \sqrt{TV_g}\right\}\right)$,
 $\operatorname{Vio}_k \leq O(1), \forall k = 1, 2, ..., K$.

The O(1) bound of constraint violations is achieved

						L
Reference	$\operatorname{Regret}(R)$	Constraint violations(C)	Parameter-free	Slater condition-free ¹	Simultaneous	Γ
	- , ,				sublinear R&C	
[Chen et al., 2017]	$O(\max\{V_xT^a,$					Γ
	$V_gT^a, T^{1-a}\})$	$O(T^{1-a})$	\checkmark	×	×	
[Chen et al., 2018]	$O(T^{rac{7}{8}}V_x)$	$O(\max\{T^{rac{15}{16}},T^{rac{7}{8}}V_x\})$	\checkmark	\checkmark	×	
[Chen and Giannakis, 2019]	$O(V_xT^{rac{3}{4}})$	$O(T^{rac{3}{4}})$	\checkmark	×	×	
[Chen and Giannakis, 2019]	$O(V_xT^{rac{1}{2}})$	$O(T^{rac{1}{2}})$	\checkmark	×	×	
[Cao and Liu, 2018]	$O(V_x^{rac{1}{2}}T^{rac{1}{2}})$	$O(V_x^{rac{1}{4}}T^{rac{3}{4}})$	×	×	✓	
Thm.1	$O(\max\{\sqrt{TV_x},V_g\})$	$O(\max\{\sqrt{T},V_g\})$	\checkmark	\checkmark	✓	
Thm.1	$O(\sqrt{TV_x})$	$O(\max\{T^{rac{3}{4}},V_g\})$	\checkmark	\checkmark	✓	
Thm.2	$O\max\{\sqrt{TV_x}, \sqrt{TV_g}\})$	O(1)	\checkmark	×	✓	

• Sublinear regret and constraint violations simultaneously

Reference	$\operatorname{Regret}(\mathrm{R})$	Constraint violations(C)	Parameter-free	Slater condition-free ¹	Simultaneous
					sublinear $R\&C$
[Chen et al., 2017]	$O(\max\{V_xT^a,$				
	$V_g T^a, T^{1-a}\})$	$O(T^{1-a})$	\checkmark	×	×
[Chen et al., 2018]	$O(T^{rac{7}{8}}V_x)$	$O(\max\{T^{rac{15}{16}},T^{rac{7}{8}}V_x\})$	\checkmark	\checkmark	×
[Chen and Giannakis, 2019]	$O(V_xT^{rac{3}{4}})$	$O(T^{rac{3}{4}})$	\checkmark	×	×
[Chen and Giannakis, 2019]	$O(V_xT^{rac{1}{2}})$	$O(T^{rac{1}{2}})$	\checkmark	×	×
[Cao and Liu, 2018]	$O(V_x^{rac{1}{2}}T^{rac{1}{2}})$	$O(V_x^{rac{1}{4}}T^{rac{3}{4}})$	×	×	\checkmark
Thm.1	$O(\max\{\sqrt{TV_x},V_g\})$	$O(\max\{\sqrt{T},V_g\})$	\checkmark	\checkmark	\checkmark
Thm.1	$O(\sqrt{TV_x})$	$O(\max\{T^{rac{3}{4}},V_g\})$	\checkmark	\checkmark	\checkmark
Thm.2	$O \max\{\sqrt{TV_x}, \sqrt{TV_g}\})$	O(1)	\checkmark	×	\checkmark

• Matches the state-of-the-art dynamic regret bound $O(\sqrt{TV_x})$ in classic OCO, when the path-length of the benchmark sequence is V_x

Reference	$\operatorname{Regret}(\mathrm{R})$	Constraint violations(C)	Parameter-free	Slater condition-free ¹	Simultaneous sublinear R&C
[Chen et al., 2017]	$O(\max\{V_xT^a,$				
	$V_g T^a, T^{1-a}\})$	$O(T^{1-a})$	\checkmark	×	×
[Chen et al., 2018]	$O(T^{rac{7}{8}}V_x)$	$O(\max\{T^{rac{15}{16}},T^{rac{7}{8}}V_x\})$	\checkmark	\checkmark	×
[Chen and Giannakis, 2019	9] $O(V_x T^{\frac{3}{4}})$	$O(T^{\frac{3}{4}})$	\checkmark	×	×
[Chen and Giannakis, 2019	9] $O(V_x T^{\frac{1}{2}})$	$O(T^{rac{1}{2}})$	\checkmark	×	×
[Cao and Liu, 2018]	$O(V_x^{rac{1}{2}}T^{rac{1}{2}})$	$O(V_x^{rac{1}{4}}T^{rac{3}{4}})$	×	×	\checkmark
Thm.1	$O(\max\{\sqrt{TV_x}, V_g\})$	$O(\max\{\sqrt{T},V_g\})$	\checkmark	\checkmark	\checkmark
Thm.1	$O(\sqrt{TV_x})$	$O(\max\{T^{rac{3}{4}},V_g\})$	\checkmark	\checkmark	\checkmark
Thm.2	$O \max\{\sqrt{TV_x}, \sqrt{TV_g}\})$	<i>O</i> (1)	✓	×	\checkmark

• Theorem 1 (case 1): the regret and constraint violations bounds are all no worse than the state-of-the-art results when V_x is not too large

Reference	$\operatorname{Regret}(\mathrm{R})$	Constraint violations(C)	Parameter-free	Slater condition-free ¹	Simultaneous
					sublinear $R\&C$
[Chen et al., 2017]	$O(\max\{V_xT^a,$				
	$V_g T^a, T^{1-a}\})$	$O(T^{1-a})$	\checkmark	X	×
[Chen et al., 2018]	$O(T^{rac{7}{8}}V_x)$	$O(\max\{T^{rac{15}{16}},T^{rac{7}{8}}V_x\})$	\checkmark	\checkmark	×
[Chen and Giannakis, 2019]	$O(V_xT^{rac{3}{4}})$	$O(T^{rac{3}{4}})$	\checkmark	×	×
[Chen and Giannakis, 2019]	$O(V_xT^{rac{1}{2}})$	$O(T^{rac{1}{2}})$	\checkmark	×	×
[Cao and Liu, 2018]	$O(V_x^{rac{1}{2}}T^{rac{1}{2}})$	$O(V_x^{\frac{1}{4}}T^{\frac{3}{4}})$	×	×	\checkmark
Thm.1	$O(\max\{\sqrt{TV_x},V_g\})$	$O(\max\{\sqrt{T},V_g\})$	\checkmark	\checkmark	\checkmark
Thm.1	$O(\sqrt{TV_x})$	$O(\max\{T^{rac{3}{4}},V_g\})$	\checkmark	\checkmark	\checkmark
Thm.2	$O \max\{\sqrt{TV_x}, \sqrt{TV_g}\})$	<i>O</i> (1)	✓	×	\checkmark

• Theorem 1 (Case 2): the regret bound outperforms all existing works

Reference	$\operatorname{Regret}(\mathrm{R})$	Constraint violations (C)	Parameter-free	Slater condition-free ^{1}	Simultaneous
	_ 、 ,	. ,			sublinear R&C
[Chen et al., 2017]	$O(\max\{V_xT^a,$				
	$V_gT^a, T^{1-a}\})$	$O(T^{1-a})$	\checkmark	×	×
[Chen et al., 2018]	$O(T^{rac{7}{8}}V_x)$	$O(\max\{T^{rac{15}{16}},T^{rac{7}{8}}V_x\})$	\checkmark	\checkmark	×
[Chen and Giannakis, 2019]	$O(V_xT^{rac{3}{4}})$	$O(T^{rac{3}{4}})$	\checkmark	×	×
[Chen and Giannakis, 2019]	$O(V_xT^{rac{1}{2}})$	$O(T^{rac{1}{2}})$	\checkmark	×	×
[Cao and Liu, 2018]	$O(V_x^{rac{1}{2}}T^{rac{1}{2}})$	$O(V_x^{rac{1}{4}}T^{rac{3}{4}})$	Х	×	\checkmark
Thm.1	$O(\max\{\sqrt{TV_x},V_g\})$	$O(\max\{\sqrt{T}, V_g\})$	\checkmark	\checkmark	\checkmark
Thm.1	$O(\sqrt{TV_x})$	$O(\max\{T^{rac{3}{4}},V_g\})$	\checkmark	\checkmark	\checkmark
Thm.2	$O\max\{\sqrt{TV_x}, \sqrt{TV_{\boldsymbol{g}}}\})$	<i>O</i> (1)	\checkmark	×	\checkmark

• Theorem 2: the bound of constraint violations outperforms all existing works

Reference	$\operatorname{Regret}(\mathrm{R})$	Constraint violations(C)	Parameter-free	Slater condition-free ¹	Simultaneous sublinear R&C
[Chen et al., 2017]	$O(\max\{V_xT^a,$				
	$V_g T^a, T^{1-a}\})$	$O(T^{1-a})$	\checkmark	×	×
[Chen et al., 2018]	$O(T^{rac{7}{8}}V_x)$	$O(\max\{T^{rac{15}{16}},T^{rac{7}{8}}V_x\})$	\checkmark	\checkmark	×
[Chen and Giannakis, 2019]	$O(V_xT^{rac{3}{4}})$	$O(T^{rac{3}{4}})$	\checkmark	×	×
[Chen and Giannakis, 2019]	$O(V_xT^{rac{1}{2}})$	$O(T^{rac{1}{2}})$	✓	×	×
[Cao and Liu, 2018]	$O(V_x^{rac{1}{2}}T^{rac{1}{2}})$	$O(V_x^{rac{1}{4}}T^{rac{3}{4}})$	X	×	\checkmark
Thm.1	$O(\max\{\sqrt{TV_x},V_g\})$	$O(\max\{\sqrt{T},V_g\})$	✓	\checkmark	\checkmark
Thm.1	$O(\sqrt{TV_x})$	$O(\max\{T^{rac{3}{4}},V_g\})$	✓	✓	✓
Thm.2	$O\max\{\sqrt{TV_x}, \sqrt{TV_g}\})$	O(1)	 ✓ 	×	\checkmark

• Parameter-free, that is, the parameters in our algorithm do not require prior information of the regularities (e.g., V_x or V_g)

Reference	$\operatorname{Regret}(\mathrm{R})$	Constraint violations(C)	Parameter-free	Slater condition-free ¹	Simultaneous sublinear R&C
[Chen et al., 2017]	$O(\max\{V_xT^a,$				
	$V_gT^a, T^{1-a}\})$	$O(T^{1-a})$	\checkmark	×	×
[Chen et al., 2018]	$O(T^{rac{7}{8}}V_x)$	$O(\max\{T^{rac{15}{16}},T^{rac{7}{8}}V_x\})$	\checkmark	✓	×
[Chen and Giannakis, 2019]	$O(V_xT^{rac{3}{4}})$	$O(T^{rac{3}{4}})$	\checkmark	×	×
[Chen and Giannakis, 2019]	$O(V_xT^{rac{1}{2}})$	$O(T^{rac{1}{2}})$	\checkmark	×	×
[Cao and Liu, 2018]	$O(V_x^{rac{1}{2}}T^{rac{1}{2}})$	$O(V_x^{rac{1}{4}}T^{rac{3}{4}})$	Х	×	\checkmark
Thm.1	$O(\max\{\sqrt{TV_x},V_g\})$	$O(\max\{\sqrt{T},V_g\})$	✓	✓	✓
Thm.1	$O(\sqrt{TV_x})$	$O(\max\{T^{rac{3}{4}},V_g\})$	\checkmark	✓	
Thm.2	$O \max\{\sqrt{TV_x}, \sqrt{TV_g}\})$	O(1)	✓	×	✓

• Holds no matter whether the Slater condition holds or not

Insight

- Connections to queue systems stability.
 - Create a real queue $\boldsymbol{Q}(t)$ to keep track of the "debt" to constraints up to round t
 - Q(t) = 0, $Q(t) = [Q(t-1) + g_t(x_t)]^+ = [\sum_{\tau=1}^t g_\tau(x_\tau)]^+$

Insight

- Connections to queue systems stability.
 - Create a real queue $oldsymbol{Q}(t)$ to keep track of the "debt" to constraints up to round t
 - Q(t) = 0, $Q(t) = [Q(t-1) + g_t(x_t)]^+ = [\sum_{\tau=1}^t g_\tau(x_\tau)]^+$
 - Sublinear constraint violations means the real queue system $\{Q(t)\}$ mean rate stable [Neely, 2010], i.e.,

$$\lim_{T\to\infty}\frac{||\boldsymbol{Q}(T)||}{T}=0$$

 O(1) constraint violations is sufficient to show the real queue system {Q(t)} strongly stable [Neely, 2010], i.e.,

$$\lim_{T \to \infty} \frac{\sum_{t=1}^{T} ||\boldsymbol{Q}(t)||}{T} \le \mathbf{B} < \infty$$

Simulation

- Baselines [8, 3, 11, 9]:
 - [Chen et al., 2017, Chen et al., 2018, Cao and Liu, 2019, Chen and Giannakis, 2019]

Simulation

- Baselines [8, 3, 11, 9]:
 - [Chen et al., 2017, Chen et al., 2018, Cao and Liu, 2019, Chen and Giannakis, 2019]
- Setting 1: $V_x = V_g = O(\ln T)$

Simulation

• Setting 2:
$$V_{\chi} = V_g = O(\sqrt{T})$$

Q & A

Thanks!