
Characterizing Concurrency 
Mechanisms on NVIDIA 
GPUs for Deep Learning

Guin Gilman

Robert J. Walls



Concurrent Workloads on GPUs

• Data centers frequently experience low utilization periods with idle 
resources

• A solution is to do concurrent execution of multiple applications with 
spare resources

• Concurrent Deep Learning: Multiple deep learning inference or 
training tasks on a single GPU

2



This Talk

Are current GPU scheduling mechanisms sufficient to guarantee 
predictable and low turnaround times while also maintaining

high utilization?

3



Our Experiments

• We analyzed three concurrency mechanisms on NVIDIA GPUs:
• Priority streams

• Time-slicing

• Multi-Process Service (MPS)

• We characterized their performance for concurrent deep learning 
workloads

4



Our Findings

• Concurrent execution on GPUs is suboptimal without the ability to 
reassign resources dynamically

• Concurrency mechanisms on NVIDIA GPUs also lack sufficient task 
prioritization

• Without dynamic resource assignment and task prioritization, it is 
hard to keep turnaround times low and utilization high consistently

• Fine-grained preemption is a promising solution to improve 
predictability and utilization

5



Workload Characterization



Case Study: Deep Learning Concurrent 
Workloads
• A deep learning concurrent workload consists of:

• High-priority inference jobs: a series of inference requests where low 
turnaround time and variance are important

• Low-priority training job: training task for a single model run on the same GPU 
using spare resources to achieve higher GPU utilization

6



7

Job A: Inference Task

Job B: Training Task



7

Job A: Inference Task

Job B: Training Task



7

Job A: Inference Task

Job B: Training Task



7

Job A: Inference Task

Job B: Training Task



7

Job A: Inference Task

Job B: Training Task



7

Depending on which mechanism is used, you can change 
where and when thread blocks are scheduled

Job A: Inference Task

Job B: Training Task



Our Empirical Workload

• Two sources of Models:
• MLPerf inference and training benchmarks

• PyTorch example models

• PyTorch inference tasks: 5000 consecutive inference requests

• MLPerf inference tasks had two modes:
• Consecutive, i.e., single stream (same as PyTorch task)

• Poisson, i.e., server (request arrivals followed a Poisson distribution)

8



Important Workload Characteristics

• Implemented as a sequence of kernels executed on the GPU
• Resource requirements fluctuate as different kernels are launched

9



Important Workload Characteristics

• Implemented as a sequence of kernels executed on the GPU

• Kernel runtime
• Long-running: >1ms, occupies resources for a long period of time without 

interruption

• Training jobs either had a significant amount (40-60%) or almost none (2-6%)

9



Important Workload Characteristics

• Implemented as a sequence of kernels executed on the GPU

• Kernel runtime

• Kernel size
• Large: Grid of blocks are unable to fit on the GPU, preventing other jobs from 

sharing resources

• Almost all training jobs had a significant amount (35-70%)

• Half of inference jobs had a significant amount (15-50%)

9



Existing Concurrency 
Mechanisms



Priority Streams

• From within the same process on different streams

• Three priority levels

• Uses the leftover and most-room policies

• No preemption of thread blocks
• High-priority kernels wait for any current blocks to finish

11



Time-Slicing

• Each application runs for a fixed-length time-slice of ~4ms

• Applications' time slices are executed in a round-robin fasion

• Two separate applications are never executing at the same time

• Possibility for OoM error if combined resource usage exceeds GPU's 
available resources

12



Multi-Process Service (MPS)

• A server intercepts the kernels from different processes

• Launched to the GPU as if they're from the same context on different 
streams

• Can specify an upper limit on threads per client

• For running multiple processes when there are resources leftover

• Server performs load-balancing when there are spare resources

13



High-Level Summary
Features Streams Time-slicing MPS

Separate application 
contexts

Kernel concurrency

Task prioritization

Coarse-grained 
preemption

14



Characterization of Existing 
Mechanisms



Metrics

• Turnaround time
• Time to return results after arrival

• Utilization
• Training execution time

• Variance
• Variance in turnaround time

15



Observation 1

Priority streams cannot preempt executing thread blocks in the 
middle of execution, resulting in compounded delay and resource 

contention leading to high/less predictable turnaround times.

16



Compounded Delay

17

• Compounded delay, 
where kernels are forced 
to wait behind long-
running and large ones



Observation 5

While MPS increased utilization overall, it also caused intra-SM 
resource contention that added to the execution times of both the 

training and inference tasks.

18



Compounded Delay/Resource Contention

19

• Compounded delay, 
where kernels are forced 
to wait behind long-
running and large ones

• Resource contention, 
where two smaller kernels 
share the GPU and 
interfere with each other



Observation 2

Time-slicing tended to exhibit predictable and low turnaround times 
for models with relatively low baseline turnaround times, unless there is 
memory transfer contention. This came at the cost of poor utilization, as 

the two tasks never actually executed on the GPU at the same time.

20



PyTorch Variance

21



Utilization: PyTorch vs. MLPerf

22



MLPerf Turnaround Times

23

• Compared to PyTorch
models, time-slicing saw 
drastic increases in 
turnaround time

• One possible explanation 
is memory transfer 
interference



Inference Task Transfer Times: Baseline vs. 
Time Slices

24



The Potential of Fine-Grained 
Preemption



Fine-Grained Preemption

• Two main issues to address:
• Unpredictability/inefficiency due to stochastic inference requests

• Unpredictability due to resource contention

• Improve performance through fine-grained preemption:
• Interrupt any set of thread blocks on the GPU

• Relaunch those blocks later from where they left off

25



Benefits of Fine-Grained Preemption

• Could complement priority streams or MPS
• Would eliminate the effects of compounded delay for inference task

• Could allow for rearrangement and load-balancing to avoid resource 
contention

• Makes task prioritization possible in the case of MPS

• Improve predictability (similarly to time-slicing) without sacrificing 
utilization

26



Opportunities to Hide/Reduce Preemption 
Cost

27



Summary



Our Findings

• Concurrent execution on GPUs is suboptimal without the ability to 
reassign resources dynamically

• Concurrency mechanisms on NVIDIA GPUs also lack sufficient task 
prioritization

• Without dynamic resource assignment and task prioritization, it is 
hard to keep turnaround times low and utilization high consistently

• Fine-grained preemption is a promising solution to improve 
predictability and utilization, and its costs can be offset by its potential 
benefits

28



Learn more about our work at: cake.wpi.edu

29


