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Parallel Systems Have Resulted in Parallel Workloads
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Basic Model of a Database
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Job Size

* Job Size: Running time on single core
e Reflects amount of “inherent work”
 E.g. number of tuples to be processed

How does running time change on k cores?
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But, jobs change over time
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Beyond Speedup Functions
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Query 2.1
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Modeling Jobs with Phases

A job is composed of multiple phases: Speedup Functions

* Elastic phases 8 elastic
* |nelastic phases

* Completed phase

inelastic
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* Arbitrary rates/starting phase Cores (k)
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Idea: each job looks like a Continuous Time Markov Chain
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How to split cores between queries?

How should a scheduler leverage phase information?
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The Problem with Phase Unaware Scheduling

Q3 Q2
Q1

N/

Inelastic Phase

A queries/sec.

(o]

3 EQUI: divide cores

g .
Wy equally at all times
‘ Over-allocates to

01 2 3 45 6 7 8 . .
Cores((k) inelastic phases



Scheduling In Databases
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Can we beat PA-FCFS?
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Improving phase Aware scheduling

A queries/sec. Q3 Q2
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Can we beat PA-FCFS?

Two Key Ideas:
e Defer Parallelizable Work

* Work on shorter queries Carnegie
Mellon
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Proof: Deferring parallelizable work can

be sufficient for optimalit

 Inelastic-First (IF) Policy: give strict priority to

inelastic phases

* Elastic phases~ exp(ug), Inelastic phases~ exp(u;)

e Phase sizes unknown

* |F minimizes mean response time

What happens when we violate these assumptions? ﬁ%{ﬂﬁlgw
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Incorporating Query Size

Two Key Ideas:
* Defer Parallelizable Work
 Work on shorter jobs

A queries/sec. Q3 Q2

— Q4 a1
Known query  Phase-sizes
structures? known?

IF-SRPT
* Give priority to inelastic phases
* Process inelastic phasesin SRPT order
* Process elastic phases in SRPT order . q0ic

Why not Phase-Aware SRPT (PA-SRPT)?  Uuivemity




Query 2.1
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Does IF work in Practice?
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Conclusion
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 Defer Parallelizable Work * |F-SRPT performs

* Work on shorter jobs well in practice



Questions?
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