Performance Evaluation: A Preparation for Statistics and
Data Science ?

Jean-Yves Le Boudec
EPFL, Lausanne, Switzerland
https://leboudec.github.io/leboudec/

jean-yves.leboudec@epfl.ch

ABSTRACT

Lectures that use probability or statistics often appear com-
plex to students, sometimes because the underlying stochas-
tic models are not explicited. Writing a stochastic simula-
tion program is a common exercise in a performance eval-
uation course, and we can view a simulation program as
an implementation of a stochastic model. Thus, students
who took such a course are trained to fully specify stochas-
tic models, and this can help them fully understand prob-
abilistic statements. We give examples in the context of
random graphs as well as in the interpretation of residual
scores in machine learning. Last we observe that Palm cal-
culus, which is at the heart of classical queuing theory, can
be used to provide important insights into sampling prob-
lems encountered in data collection tasks.

1. ONTHE CORRECT USE OF PROBABIL-
ITIES

In a data science lecture, Alice, hears a statements such
as

S Consider a undirected graph with N vertices where every
pair of nodes is connected with probability g

(where N is a fixed parameter) and is then asked to

Q compute the distribution p of the degree (i.e. give the
values of py for k =0,1...N — 1).

What should Alice understand ? Statement S is about prob-
abilities, and so is question Q, since it mentions a distribu-
tion. The issue with such formulations is that probabilities
are used as if they were well defined physical quantities,
whereas in reality, they depend on a model. For any state-
ment involving probabilites to make sense, the model should
be explicit (or obvious). Because Alice has previously taken
a performance evaluation course, she has experience with
writing simulation programs. She imagines a possible model
for statement S:

M1 Consider an undirected graph that is obtained as fol-
lows. It has N vertices. For every pair of vertices, flip
a biased coin that returns 1 with probability ¢ and 0
with probability 1 — ¢. If a coin returns 1, draw an
edge, else don’t. The coin flips are independent.

But she also thinks that a different model could be:

Copyright is held by author/owner(s).

M2 You are given an undirected graph with N vertices and
e edges. Let ¢ = xx—y, i-e. ¢ is the proportion of

pairs of nodes that aie connected. Pick a first node
uniformly at random among the N nodes (call it 7)
and pick a second node uniformly at random among
the remaining N — 1 nodes (call it j). The probability
that there is an edge between ¢ and j is q.

Both models are compatible with the statement S. The for-
mer produces a random graph; the latter produces a random
pair of vertices in a given graph. The same ambiguity exists
about question Q. With either model, Alice could assume
that she is given a graph and picks a vertex uniformly at
random among N; then she computes its degree. For every
integer k, px is then equal to % X the number of vertices that
have degree k. Note that the result depends on the specific
graph that was initially given. For example, if Alice chooses
model M1, the result is random, p is a random vector in the
simplex and Alice concludes that she now has to compute
the distribution of the random p.

She finds that this is too complicated, looks for the solu-
tion in a classical textbook [1] and obtains:

n= (N)t 1)

Alice concludes that what is expected from her is not the
distribution of a distribution. She hypothesizes that the
implicit model is:

M1Q Draw a graph according to M1. Draw a vertex uni-
formly at random. Call D its degree: it is random
because both the graph and the vertex are random.
Compute the distribution of the random variable D.

Later, Alice looks up the derivation of Equation (1) in [1]
and obtains:

“In a random network the probability that node ©
has exactly k links is the product of three terms:

o The probability that k of its links are present,
or ¢".

e The probability that the remaining (N —1 —
k) links are missing, or (1 —¢q)N ~'7F

e The number of ways we can select k links
from N — 1 potential links a node can have,

N -1
or k

Consequently the degree distribution of a random
network follows the binomial distribution”.

3000

LS fit in natural scale

25001

2000 »! P

1500

LS fit in log scale

1000 -

+

0 2 4 6 3

10

Model 1:
Y,, = ae®i + ¢, € ~ iid N(0,02)

12

14 16 18 2 0 2 4 6 8 0 12 14 16 18 20

Model 2:
logY;, =loga + at; + €, ¢; ~ iid N(O, 02)

Figure 1: Virus Expansion data, least square fit in log and natural scales (left); the corresponding residuals
(center and left) show that the natural scale is not compatible with the underlying model. From [2].

Alice finds this “proof” magical and tries to make sense of
it. She finds that it implicitly assumes a different model,
which she formulates as:

M1Q’ Consider one vertex of interest in a set of N. For
each of the other N —1 vertices, flip a biased coin that
returns 1 with probability ¢ and 0 with probability
1 —gq. If a coin returns 1, draw an edge, else don’t.
The coin flips are independent. Count the number of
edges and call it D', the degree of the vertex of interest.

Equation (1) is justified in [1] using model M1Q'. It is per-
haps obvious to the author of [1] that the outputs of M1Q
and M1Q’ have the same distribution, but Alice is not con-
vinced (she was trained to use the Coq proof assistant !),
therefore, she imagines the following proof.

Alice’s proof Let X; ; be the decision taken by M1 for the
link between vertices ¢, 7, with 1 < ¢ < 7 < N. The
random variables X; ; are independent and P(X;; =
1) = ¢q, P(X;,; = 0) = 1—gq. Let I be the vertex
chosen by M1Q, so that I is independent of all X ;
and P(I = i) = & for i = 1,2...N. The output of
MlQ is D = Zl§i<IXivI + ZI<i§NXIvi'

Let Y; be the decision taken by M1Q’ for the link be-
tween vertices 1 and ¢. The random variables Y; are
independent and P(Y; = 1) = ¢, P(Y; =0) =1 —gq.
The output of M1Q" is D' =3, ., . n Yi.

The conditional distribution of D given that I = 1o
is the distribution of >3, ; ;. Xiio + 22 cicn Xioi-
It is equal to the distribution of D’, because X; ; and
Y, have same distribution and are independent for all
i < jand all 7/, ie. P(D = k|I =iy) = P(D' = k).
Furthermore, it is the same for all ig. By the formula
of total probabilities:

P(D=k)= Y P(D=kI=ip)P(I=io)
=]P’_(D’_: k) > P(I=ip)
=P(D' =k) o

i.e. D and D’ have same distribution.

Alice now takes comfort in the belief that the model implic-
itly used in her data science class is M1Q, i.e. we pick a
random graph and a random vertex. Furthermore, she has
the satisfaction of understanding the proof of Equation (1).
She continues reading [1] and, a few lines later, finds the
statement:

“In a given realization of a random network
some nodes gain numerous links, while others ac-
quire only a few or no links (Image 3.8). These
differences are captured by the degree distribu-
tion, pr, which is the probability that a randomly
chosen node has degree k”.

Oh'! Alice is now puzzled and lost her comfort. The graph
is now fixed and py is interpreted as the probability that a
random node has degree k | The author of [1] did not explicit
his model and confuses students by simultaneously using
different models. He should take a performance evaluation
course !

In summary: if you mention probabilities (or distribu-
tions, or averages), make sure that you can, as a thought
experiment, imagine a simulation program that would pro-
duce a sample of what you are computing probabilities for.
If you don’t do this, the absence of an explicit model can
make the computation of probabilities appear magical or
doubtful; worse, it can lead to inconsistencies.

2. CLASSICAL STATISTICS AND SIMULA-
TORS

The requirement to formulate a possible simulation pro-
gram in order to give a meaning to statements involving
probabilities naturally extends to statistics. A common for-
mulation in classical statistics is that the data at hand can
be explained by a stochastic model that depends on a fixed
but unknown parameter 6. In the language of performance
evaluation: the data at hand was produced by a simulator,
the code of which is known but depends on some unknown
parameter 6.

Consider for example the computer-virus expansion data
in Fig. 1, where Y; is the number of infected hosts at time ¢
and the problem is to predict the number of future infected
hosts, by training the prediction system over past data. A

091

0.8

0.6~

0.5

0.4 Flow Viewpoint 4

0.3

0.2~

0.1

Packet Viewpoint

Figure 2: Proportion of flows that have a size larger than the z value, in bytes [5]. Figure from [2].

common machine learning answer to this question consists in
minimizing the score equal for example to Y, (e¢(0)?) where
e+(0) is the error term when the parameter is 6 and ¢ is in
the training set. This least square score is very common, but
is sometimes replaced by variants that use weights, or that
replace the euclidian distance by absolute deviation (i.e. the
score is Y, |e:(0)]). Also, the scale in which the error terms
e+ are measured (e.g. log versus natural) may be subject to
discussion.

Viewing the data as produced by a simulator provides
an interesting angle of attack to address such issues. For
example, here we could assume that the data is produced
by the simulator Y; = f(¢,0) + e; where the sequence &,
is identically distributed gaussian noise, f is a known func-
tion and 6 is the parameter to be learnt. It is well known
that this leads to least squares, i.e. to the score func-
tion 3, (e (0))® with e:(6) = Y: — f(t,0). An alternative
simulator is log(Yz) = log(f(t,0)) + £¢, with the same as-
sumption on &;; this leads to the score Y, (e:(0)%) with
e+(0) = log(Y:) —log(f(¢,0)). Yet a different simulator is ob-
tained if we assume that ¢, is identically distributed Laplace
noise instead of gaussian; this leads to minimum absolute de-
viation instead of least-square [2]. Deciding which simulator
is a better model of the data is a simpler task than deciding
which scores provides better learning, as it can be analyzed
by comparing the residuals to the distribution assumed by
the simulator (see Fig. 1 for an example).

3. PALM, PASTA AND THE IMPORTANCE
OF THE VIEWPOINT

According to massive data collected by the local railway
company, less than 5% of all trains arrive late. The local
consumer association uses a crowdsourcing app and finds
that close to 30% of consumers complain about late trains.
Who says the truth ? Assuming that both data collections
are true and have the same criteria for late trains, these
two numbers might not be incompatible, as they depend on
different sampling methods.

In queuing theory, it is frequent to compare distributions
seen by an arriving customer and seen at an arbitrary point
in time. This change of viewpoint underlies the derivation of
the Pollaczek-Khinchine formula for the M/G/1 queue and
is present in the celebrated Little’s law N = AR, where NV
(average numbers in system) is a time-average, R (average

response time) is seen by an arriving customer and A is the
rate of arrival or departure of customers. Such results are in-
stances of Palm calculus, which makes links between perfor-
mance metrics obtained with different viewpoints. PASTA
(Poisson Arrivals See Time Averages, more precisely: Pois-
son arrivals independent of system state see time averages)
is an example where both viewpoints coincide and can be
used to obtain the time average viewpoint by Poisson sam-
pling [3]. The classical presentation of Palm calculus uses
the formalism of abstract probability spaces [4], but a more
gentle presentation that uses the language of simulators is
also possible [2].

Palm calculus can be applied to a large variety of settings,
well beyond queuing theory. Consider for example the mea-
surements of internet flow sizes reported in [5]: ~ 10% of
flows have a size larger than 200 bytes, whereas ~ 85% of
packets are in such flows. This is a typical example of dif-
ference in sampling method: both curves in Figure 2 give
the distributions of flow sizes, the top curve samples per
packet whereas the bottom one samples per flow. Palm’s
inversion formula reconciles the two viewpoints and gives
fr(s) = nsfr(s) where fr() [resp. fp()] is the probability
density function of flow sizes per flow [resp. per packet] and
n~ ! is the average flow size [2].

Even simpler, some Palm calculus formulas can be de-
rived empirically, by assuming the data is obtained from a
simulation, and by comparing the codes that compute dif-
ferent metrics. Consider for example Little’s formula and
assume you run a discrete-event simulation in order to eval-
uate N, the average number of customers in the system of
interest; it can be defined as 7 fOT C(t)dt where C(t) is the
number of customers present at simulated time ¢ and T is
the finish time of the simulation. One way to estimate N
is to maintain a counter backlogCtr that is initially 0 and
accumulates the value of fot NOW (¢)dt; whenever an event
(arrival, departure) occurs, this counter is incremented by
C~ At where C™ is the value of the counter C just before
the event occurs and At is the time elapsed since the pre-
vious occurrence of an event. At the end of the simulation,
an estimate of N is N = 1 backlogCtr. Similarly, the av-
erage response time R is estimated by R = ﬁ 221:1 R,
where R,, is the response time of the mth customer and M
is the total number of customer served in the simulation.
The value of the sum in this formula can be obtained by

maintaining a counter respTimeCtr that is initially 0 and is
incremented at every event. The increment is the integral
of all increments in response time of all customers present
in the system between now and the previous event; there
are C'~ such customers and their response time increment
is At, i.e. respTimeCtr is incremented by C~ At, same as
backlogCtr. Thus these two counters are equal throughout
the simulation. At the end of the simulation, R is estimated
by R = %respTimeCtr = %backlogCtr. It follows that
N = 2 R. Observe that the rate of arrival can be estimated
by A % and we obtain Little’s formula N = AR.

The same method can be applied to the conflicting mea-
sures of late trains. Imagine a simulation with N train ar-
rival events and let D,, = 1 if the nth arrival event is late,
D, =0 if it is on time. The railway company’s estimate is
D= % 22]:1 D,,. Let P, be the number of passengers leav-
ing the train at the nth arrival event. The consumer app
estimates D* = 7271:]7\,1 P*Igf".

n=1

TS

The average number of pas-

. : - B N
sengers per train arrival event is P = % > ey Pn and the

average number of passengers per late train arrival event is
151 = M. Thus D* = DPlLfte. If, in average

ate >N_, Dn P ’ ’
there are 6 times more passengers in late trains than in all
trains, then the two estimations are compatible !

4. CONCLUSION

Probability and statistics are branches of science that may
appear complex to students, as they involve an in-depth
understanding of what probability really means. After fol-
lowing a performance evaluation course, many students find
that they are well equipped to fully grasp the meaning of
probability and statistics as used in data science courses.
This is perhaps because performance evaluation courses do
exercise the theory of probability in powerful ways, but cer-
tainly also because viewing data as the output of a simulator
can provide useful insights !

5. REFERENCES

[1] Albert-Laszl6 Barabdsi. Network science. Philosophical
Transactions of the Royal Society A: Mathematical,
Physical and Engineering Sciences, 371(1987):20120375,
2013.

[2] Jean-Yves Le Boudec. Performance Evaluation of

Computer and Communication Systems. EPFL Press,

Lausanne, Switzerland, also available online at

https://leboudec.github.io/perfeval /, 2010.

Nicolas Hohn and Darryl Veitch. Inverting sampled

traffic. IEFE/ACM Transactions on Networking,

14(1):68-80, 2006.

Pierre Brémaud. Point Process Calculus in Time and

Space: An Introduction with Applications, volume 98.

Springer Nature, 2020.

A. Shaikh, J. Rexford, and K.G. Shin. Load-sensitive

routing of long-lived IP flows. In Proceedings of the

conference on Applications, technologies, architectures,
and protocols for computer communication, pages

215-226. ACM New York, NY, USA, 1999.

3

[4

[5

	teaPACS-intro
	HarcholBalterPERpaper
	aimd
	PMTechingwTechnology-Xia
	JY
	211018_v2

