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ABSTRACT
The well-known Additive Increase-Multiplicative Decrease
(AIMD) abstraction for network congestion control was first
published by Dah-Ming Chiu and Raj Jain in their seminal
work [4] in 1989 and soon played a prominent part in TCP al-
gorithm design for the Internet. The ingenuity of AIMD lies
in the abstraction of Internet congestion control, and ever
since its inception has also been a staple part of teaching
curriculum for performance evaluation and computer net-
working courses at universities worldwide. In this paper,
we describe teaching examples for university students to ap-
preciate the AIMD abstraction from the theoretical aspects
such as convex optimization and Perron-Frobenius theory
to the data science aspect. The essence of cooperation en-
compassed by AIMD reverberates even in teaching networks
formed by students and educators, giving rise to online class-
room flipping teaching tools and data analytics to close the
gap between teachers and students.
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1. INTRODUCTION
In the past, the performance analysis of a computer sys-

tem often depends on a mathematical model. This per-
formance model serves as a first approximation to the un-
derlying real-world system, which may be too complex to
analyze. Over the years, some elegant and useful perfor-
mance models such as the queuing models and stochastic
models have emerged [15, 12, 14, 16, 9]. To the practi-
tioners, this performance model choice is often a trade-o↵
between mathematical tractability and its relevance to the
real-world system. Today’s computer systems are becoming
more complex, and finding an appropriate model becomes
even more crucial. The right “abstraction” helps to focus on
the most interesting and crucial aspect of a complex prob-
lem, and opens the door to a variety of performance analysis
techniques. It allows one abstraction to relate to other ab-
stractions, and is useful for exploring the trade-o↵ between
tractability and approximation.

The Additive-Increase-Multiplicative-Decrease (AIMD) al-
gorithm abstraction proposed by Dah-Ming Chiu and Raj
Jain in [6] is one of the most influential work on Internet con-
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gestion control in the field of networking.1 In the early days
of the Internet, there were many di↵erent models to study
congestion control, some from the viewpoint of a single flow
while others assume synchronous events or fluid flows. There
was even little understanding of the convergence and stabil-
ity properties of the then existing congestion control algo-
rithms for the Transmission Control Protocol (TCP) proto-
col in the Internet.

The most important contribution of the AIMD abstrac-
tion is to pose the congestion control problem as a problem
with social consequences, whereby the parties encountering
the same congestion need to work cooperatively to arrive
at a good solution. The AIMD abstraction simplifies the
problem of congestion control by considering only two flows,
which is enough to address the issues of feedback-driven al-
gorithm design. The AIMD abstraction has also been a
staple part of performance evaluation and computer net-
working courses at colleges and universities worldwide due
to its coverage in popular textbooks (e.g., see [17, 31]).

Interestingly, the ingenuity behind the AIMD abstraction
can be appreciated through a classical illustration of two
flows as shown in Figure 1a.2 This illustration can be found
in a number of popular computer networking textbooks (see,
e.g., [17, 31]) to describe at length the engineering insight
behind the AIMD abstraction. Indeed, an insightful illus-
tration to accompany the right abstraction to a complex
problem can be helpful to teaching university students to
appreciate the problem. The AIMD abstraction in [6] has
ushered in the development of robust TCP algorithms in
[11] and new performance analysis techniques using con-
vex optimization theory, Perron-Frobenius theory and many
other mathematical tools. This AIMD abstraction has also
found applications in defending against denial of service at-
tacks [30], charging electric cars [7] and other large-scale
distributed systems.

In the following, we discuss how the AIMD abstraction
opens the door to two unique performance analysis tech-
niques using convex optimization theory and Perron-Frobenius
theory as well as teaching them in universities at the under-
graduate and graduate levels. We then conclude the paper
by drawing a parallel between the AIMD abstraction and
the flipped classroom approach for teaching.

1This paper is in honor of Professor Dah-Ming Chiu on the
occasion of his 70th birthday.
2Wittgenstein’s principle of “what can be shown, cannot be
said” applies fittingly to illustrating an abstraction.



(a) A visual proof of the AIMD abstraction showing that the rates

of two users converge to the fairness line. When the rate iterates are

below the e�ciency line, the additive-increase mechanism is akin to

a 45-degree increment plot. Otherwise, the multiplicative-decrease

mechanism is akin to sliding to the midpoint between the current

rate iterate and the origin. Photo courtesy of [6].

(b) Illustrating how the AIMD abstraction teaches convex opti-

mization theory and Perron-Frobenius Theory. Optimization dual

algorithm adapts the e�ciency line to balance supply and demand

(cf. Section 2). The rate trajectory along the e�ciency line is

analyzed using Perron-Frobenius theory, showing its convergence

to the fairness line that is interpreted as a Perron-Frobenius right

eigenvector (bold arrow), i.e., limk!1 w(k) / (1, 1)
T

(cf. Sec. 3).

2. AN OPTIMIZATION THEORETIC PER-
SPECTIVE OF AIMD ABSTRACTION

Beginning in the late 1990s, a theoretical framework called
Network Utility Maximization (NUM) has emerged that can
analyze both the equilibrium and the dynamical nature of
TCP algorithms [13, 28, 26, 22, 33]. The usefulness of this
elegant framework brings tools and ideas from convex op-
timization theory [3] to bear on the design of internet con-
gestion control algorithms. By leveraging Lagrange duality
and gradient descent algorithms, TCP can be interpreted as
a dual algorithm that maximizes the aggregate utilities in
the network [13, 28, 26, 22, 33]. Specifically, AIMD can be
viewed as solving an implicit network utility maximization
where the sending source rates and network congestion mea-
sures are interpreted as primal variables and dual variables
respectively.

The basic network utility maximization of n sending sources
can be formulated as follows:

maximize
nX

s=1

Us(xs) subject to Rx � c, x ⌫ 0,

where xs is the sending rate of source s given a routing
matrix R with entries Rls = 1 if source s uses link l with a
link capacity cl or 0 otherwise. At the tth iteration, source
s solves:

x⇤
s(qs) = argmax {Us(xs)� qsxs} ,

and the lth link runs the algorithm:
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8
<

:pl(t)� ↵(t)

0

@cl �
X

s:l2L(s)

x⇤
s(qs(t))

1

A , 0

9
=

; .

Essentially, each link updates its congestion measure pl(t)
(i.e., the shadow price) based on the subgradient algorithm
in convex optimization theory. Each source has access to
the total price incurred on the end-to-end route (ignoring
the end-to-end delay) as qs(t) =

P
l Rlspl(t). Now, certain

choices of step size ↵(t) (e.g., ↵(t) = 1/t) can guarantee the
convergence to the globally optimal solution (x⇤, p⇤), indi-
cating that the source and link algorithms jointly balance
the supply and demand through pricing. In particular, us-
ing AIMD with an end-to-end marking probability qs and a
total delay Ds, TCP Reno has the utility function [22, 28,
26]:

arctan utility : Us(xs) =

p
3/2

Ds
arctan

⇣p
2/3xsDs

⌘
.

This is due to the Karush-Kuhn-Tucker optimality condi-
tion: dUs(xs)

d xs
= qs(xs) where qs = 3

2x2
sD

2
s+3

, thus obtaining

the above utility function after integration. This is also the
mathematical basis for other fairness abstraction like pro-
portional fairness in TCP Vegas and FAST TCP [22, 32].
Many other forms of TCP do not leverage Lagrange dual-
ity directly as they are instead interpreted as solutions to
a penalty function formulation of the optimization problem
[28, 26].

A teaching curriculum at the graduate student level could
cover basic convex optimization theory like Lagrange du-



ality, Karush-Kuhn-Tucker conditions [3] and optimization
algorithm design. Students can appreciate the AIMD ab-
straction or other TCP algorithms as gradient-based opti-
mization algorithms that implicitly cooperate to maximize
the network utility. This abstraction ties in naturally with
the idea of layering as optimization decomposition in [5] that
establishes a mathematical theory of network architectures
based on an optimization-theoretic perspective for cross-
layer optimization [22, 4]. In essence, optimization theory is
the language to mathematically quantify cooperation within
and between the layers of abstractions of the OSI model net-
work stack for the Internet.

Students can be taught using performance analysis and
data science techniques to interpret measurement data un-
der a variety of network congestion scenarios like a single
bottleneck link with two flows or a network whose link ca-
pacity can be shaped by the abstraction of the physical or
medium access control layer (e.g., algorithms for wireless
network optimization [29]). Project-based learning can be
incorporated in a graduate teaching curriculum to guide stu-
dents to fine-tune optimization-based algorithms,3 to design
data analytics to reduce data-driven models into appropri-
ate performance models with parameters to be optimized,
and to validate di↵erent utility functions using convex opti-
mization theory. In addition, the optimization perspective
allows students to appreciate how the theory of primal and
dual decomposition in distributed optimization applies to
connecting abstractions across the network protocol layers.

3. A PERRON-FROBENIUS THEORETIC PER-
SPECTIVE OF AIMD ABSTRACTION

The AIMD abstraction can o↵er a glimpse to the theory
of positive switched linear systems and dynamical systems
theory. In particular, a positive discrete-time system can
precisely describe the trajectory of rates at the bottleneck
link as illustrated in Figure 1a. Following [1, 7], let ws(k)
denote the congestion window size of source s immediately
before the kth network congestion event is detected by all
the sources as shown in Figure 1b. Let ↵s and 0 < �s < 1 be
the additive and multiplicative parameters of source s using
the AIMD algorithm (that are conventionally set as 1 and
0.5) respectively. From the assumption of equal round-trip-
times for each source (i.e., synchronous action of all sources),
it can be seen that the window evolution under AIMD is
completely defined over all time instants by knowledge of the
ws(k) and the three time epochs corresponding to the time
at which the number of unacknowledged packets in the pipe
equals �sws(k), the time at which the pipe is full and the
time when all the sources detect congestion simultaneously.

Let qmax and P be, respectively, the maximum queue
length of the congested bottleneck link and the maximum
instantaneous number of sent unacknowledged packets that
are in transit (e.g., P = qmax + BT where B is the bot-
tleneck link service rate in packets per second and T is the
round-trip time). Therefore, we have [1]:

nX

i=1

wi(k) = P +
nX

i=1

↵i, 8 k > 0.

3An example is writing the smallest linear program solver in
Matlab, which is inspired by a convex optimization course
at Stanford University, as described in the Appendix.

At the (k+1)th congestion event, the congestion window of
source s satisfies

ws(k + 1) = �sws(k) +

✓
↵sPn
i=1 ↵i

◆ nX

i=1

(1� �i)wi(k),

and, letting w(k) = (w1(k), . . . , wn(k))
T , a positive linear

system in matrix form is obtained as [1, 7]:

w(k + 1) = Aw(k),
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whose spectrum (particularly, the Perron-Frobenius eigen-
value and eigenvectors) provides insights on fairness, rate
of convergence and transient response [1]. In particular, we
have

lim
k!1

w(k) =
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,

which, if specialized to the case of ↵s = 1 and �s = 0.5 for all
s, is proportional to the all-ones vector (i.e., the fairness line
in [6]) as it should be. From a performance modeling per-
spective, the Perron-Frobenius theoretic perspective accu-
rately quantifies the e↵ect of AIMD abstraction parameters
on fairness, and allows TCP rate adaptation to be simulated
by the classical power method algorithm.

Networking courses at the undergraduate student level of-
ten use Figure 1a in [6] to demonstrate that AIMD guaran-
tees convergence to fairness due to its coverage in popular
textbooks like [17, 31]. The undergraduate curriculum could
be adapted to cover the classical linear Perron-Frobenius
theory [7] and the aforementioned eigenvector interpreta-
tion of the fairness line in [6]. The linear Perron-Frobenius
theory should be accessible to undergraduate students as
they may have come across its other applications like the
Google Pagerank and Markov chains in other courses. Per-
formance analysis can be combined with data science tech-
niques to study the transient behavior and convergence of
flow rates in a bottleneck link using the iterative power
method algorithm. Students can conduct experiments using
data flows with di↵erent AIMD parameters {↵s,�s} for all
s to compete with the conventional TCP sources to empiri-
cally deduce that the cooperative configuration (i.e., “TCP-
friendly”) is such that ↵s = 2(1 � �s) for all s. In other
words, all these di↵erent flows eventually share the capacity
equally regardless of their initial point conditions.

A teaching curriculum at the graduate student level can
involve the nonlinear versions of the Perron-Frobenius the-
ory (e.g., see [29, 25]) to analyze the AIMD abstraction
for more general problems. To enhance the accessibility
to the finite dimensional nonlinear Perron-Frobenius theory,
the AIMD abstraction can be a useful illustrative example
to introduce graduate students to more advanced mathe-
matical tools in abstract problem solving. Graduate stu-
dents can also learn to design data analytics based on TCP



data measurement and apply machine learning algorithms
to the AIMD abstraction or data-driven models to create
computer-generated TCP algorithms (e.g., see recent sim-
ilar ideas in [27], [35]). These data analytics can also be
used to validate assumptions. For example, the AIMD ab-
straction in [6] can be validated with a single bottleneck
data-driven model, and machine learning helps to automate
this process when the bottleneck link may shift around in
the network due to variable tra�c conditions.

4. THE POWER OF COOPERATION IN CLASS-
ROOM TEACHING

In this section, we describe a flipped classroom teaching
approach in [19] that leverages the power of cooperation in
teaching the mathematical theories and data science skill-
sets mentioned in the previous sections. In traditional uni-
versity teaching, the teacher tends to just give lectures and
hand out homework to students – there is less cooperation
between teacher and students as well as between students.
A flipped classroom approach leverages the power of coop-
eration to improve the interaction between the teacher and
students using feedback [10]. Can we engineer flipped class-
room teaching tools to enhance teacher-student interaction
and cultivate the spirit of cooperation between the teacher
and students?

Interestingly, some ideas in flipped classroom teaching
can be regarded as analogous to that of AIMD/TCP in
distributed networking. Classroom flipping often requires
the teacher to actively gather some form of information re-
lated to how students are learning. Let us draw a parallel
between AIMD/TCP and flipped classroom teaching.4 In
AIMD/TCP, the users may wish to send as much data pack-
ets as possible without knowing the link capacity ahead in
time. In teaching, what is the “content capacity” (related to
teachers asking “am I teaching too much?” or “am I teaching
this not enough?”)? Is there a back-o↵ when teachers realize
that they are teaching too much content? In AIMD/TCP,
the actual information of link capacity and degree of fair-
ness are not known to the users sending the data packets. In
teaching, what is the “comprehension capacity” (related to
teachers asking “are some students being overwhelmed and
dropping behind?” or “is this material accessible to all the
students?”)? Is there a slow start when teachers introduce
new or more advanced concepts in class?

How to facilitate feedback in teaching to actively gather
this information is of essence in any flipped classroom ap-
proach for teaching. Let us briefly describe how this infor-
mation is obtained by short quizzes in two di↵erent class-
room flipping approaches, namely Peer Instruction [34, 18,
23] and Just-In-Time Teaching [24]. Roughly speaking, quizzes
are issued to students in class for Peer-Instruction and relies
on the use of clickers – a kind of audience response system –
to query students in classes and actively encourage them to
seek out peers with di↵erent perspectives on a question to
discuss before giving them the correct solution. Typically,
students are first given a question and asked to vote indi-
vidually before they get to see a whole-class response in the
form of statistical display like histograms or pie-charts, and
then students are asked to reflect on their votes and to en-
gage in peer discussions. This poll-quiz routine is a unique

4The author thanks Geo↵rey M. Voelker for suggesting the
parallel between AIMD/TCP and classroom teaching.

feature in Peer Instruction [34, 18, 23].
The basic idea of Just-In-Time Teaching is for teachers

to adapt class instruction by using some form of quiz feed-
back before students come to class [24]. Teachers can use
the diagnostic results as talking points in class to engage
students, and these quizzes can double as a low-stakes as-
sessment when they are carefully designed. The purpose of
quiz feedback is therefore instrumental to allow teachers and
students to cooperate implicitly, and should be optimized
in order to close the gap between teachers and students.
The quiz feedback can be implemented in mobile software
as students are likely to have personal mobile devices like
a smartphone or tablet. We have developed mobile chat-
bot software technologies in [19] to blend together these two
classroom flipping pedagogical methods for in-person or re-
mote instructions. Beyond digitizing the clicker, the mobile
chatbot software in [19] allows teachers to use the poll-quiz
routine to regulate content delivery for the whole class to
meet the “content capacity” and to use outside-class quizzes
of varying di�culty levels to meet the “comprehension ca-
pacity” of individual students.

Let us describe the poll-quiz routine in [19] used for online
teaching in 2020. The teacher first issues a poll whose in-
stantaneous response outcome can be observed by the entire
class, and a short discussion (e.g., peer discussions) ensues.
This is then concluded by a time-limited quiz whose con-
tent is related to the prior poll. The polls and quizzes are
typically multiple-choice questions but they can be enriched
with multimedia contents, automated hints or interactive
human-computer input like touch-screen annotation with
auto-grading capability in [20, 21]. Figure 2a shows the mo-
bile chatbot software interface with a poll assessing students
on using an optimization software in [8] to solve a network
utility maximization problem for rapid programming syn-
thesis as shown in Figure 2b. An optimization framework is
proposed in [19] to optimize the frequency and di�culty lev-
els of quizzes, and data analytics can collate the data from
the series of poll-quiz routines to identify students’ weak-
ness in learning and the instructors’ blind spots in online
teaching.

Now, creating a pair of poll and quiz for such online class-
room flipping is an art. Patrick H. Winston who was an AI
expert noted for his pioneering work in teaching excellence
at MIT explained technology-enabled polling [36]: One obvi-
ous advantage is that clicker polling does not embarrass shy
students fearful of ridicule if they choose the wrong answer.
One not-so-obvious advantage is that instructors who choose
to have clickers feel obligated to use them, and so must con-
ceive interesting and informing polling questions (Patrick H.
Winston [36]). Indeed, equipping instructors who are moti-
vated to find interesting and engaging questions to synchro-
nize in-class teaching with real-time feedback is important.
Such a technology-enabled pedagogy can create new forms of
online instruction by allowing teachers to find suitable oper-
ating points in the “content capacity” and to understand lim-
itations due to the “comprehension capacity”. This can be
especially useful for a fully online instruction setting such as
one necessitated by the COVID-19 pandemic, where the au-
thors in [2] at Stanford University pointed out that teachers
at the Computer Science department encountered problems
to “read a room” while teaching remotely and highlighted a
need for further research on blended forms of instruction.



(a) (b) (c)

Figure 2: Students receive a poll via a mobile chatbot software on the topic of network utility maximization in (a) testing
their understanding of the CVX optimization software [8] in (b). In (c), the student once having voted on the poll gets to see
the whole class response to the poll before engaging in peer discussions and answering a timed quiz.

5. CONCLUSIONS
In conclusion, the principle of cooperation is the defining

characteristic of the AIMD abstraction, leading to new in-
sights on the performance evaluation of the Internet. Find-
ing the right abstraction may take academic and industry
collaboration to fully appreciate a problem. Data science
analytics may be intermediate steps to strip down a com-
plex problem to an appropriate abstraction that once fully
analyzed can allow data science analytics to build back to
a solution of the original problem. The data-driven mod-
els obtained in the process may lead to meaningful perfor-
mance models that a performance analyst can interpret or
optimize. Students can thus uncover a lot when they learn
to do abstraction using both classical performance analysis
and modern data science. Lastly, we draw a parallel be-
tween AIMD and the flipped classroom approach enabled
by mobile software technologies to engender the spirit of
cooperation between teachers and students.
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APPENDIX
In March 2010, Jacob Mattingley who was a TA for the
Convex Optimization course EE364 at Stanford University

put forth a challenge to write the smallest linear program
solver in MATLAB, with the following code of seventy-five
characters based on Dikin’s interior point method :
for i=1:50,p=diag(x)^ 2;r=p*(c-A’*(A*p*A’*p*c));
x=x-r*min(x./abs(r))/2;end
Zhonghao Zhang, a student in my class on optimization

and networking, improved that to sixty-nine characters:
for i=1:50,X=diag(x);F=X*null(A*X);d=F*F’*c;
x=x-d/max(X(d))/2;end
with the latest version being forty-nine characters based

on the algorithm of alternating direction method of multi-
pliers and created by Borja Peleato.

The software aspect of convex optimization is interesting,
but rarely covered in class. It can be a stimulating intel-
lectual exercise for students to use their favorite program-
ming language to come up with the tiniest possible versions
of various optimization algorithms, e.g., smallest quadratic
program solver in Python or C language, and then to test-
drive their software on problems of increasingly massive size.
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