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ABSTRACT
This document examines five performance questions which
are repeatedly asked by practitioners in industry: (i) My
system utilization is very low, so why are job delays so high?
(ii) What should I do to lower job delays? (iii) How can
I favor short jobs if I don’t know which jobs are short?
(iv) If some jobs are more important than others, how do
I negotiate importance versus size? (v) How do answers
change when dealing with a closed-loop system, rather than
an open system? All these questions have simple answers
through queueing theory. This short paper elaborates on
the questions and their answers. To keep things readable,
our tone is purposely informal throughout. For more formal
statements of these questions and answers, please see [14].
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1. MY SYSTEM UTILIZATION IS LOW, SO
WHY ARE JOB DELAYS SO HIGH?

How can one have low system utilization, but high delay?
To make this question more concrete, consider a single-server
queue shown in Figure 1, where jobs are processed in First-
Come-First-Served (FCFS) order. Here � jobs/sec is the rate
at which jobs arrive. The jobs have di↵erent sizes (service

requirements), where S is a random variable representing job
size (in seconds). The utilization (load), denoted by ⇢, is
the long-run fraction of time that the server is busy, where
⇢ = � ·E [S]. The response time (T ) of a job is the time from
when a job arrives until it completes. The delay (D) of a
job, a.k.a. its queueing time, is just T � S, namely the job’s
response time minus its size.

It seems intuitive that if the server is only utilized ⇢ = 20%
of the time, then the average job delay should be low. How-
ever this intuition is false! In fact, the mean job delay in
the case of a single-server queue depends on three factors:
(i) the utilization ⇢; (ii) the variability of job service times;
(iii) the variability of job inter-arrival times. Kingman’s
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Figure 1: Single server FCFS queue. The rectangles
represent jobs of di↵erent sizes, where the height of
the rectangle is the job’s size. The response time is
the time from when the job arrives until it completes.

approximation [20] states that:
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Here C2
S represents the squared coe�cient of variation of

the job service time, also known as the normalized variance,
where C2

S = Var(S)/E [S]2. Likewise C2
A is the correspond-

ing quantity for job inter-arrival times. Variability in the
job service times leads to high delays because it means that
short jobs end up waiting behind long ones, thus “inherit-
ing” the delays of the long jobs. Likewise variability in the
inter-arrival times is problematic because it means that jobs
arrive in bursts.

In computing systems, C2
S in particular tends to be quite

high, often in the hundreds. In fact, a recent study of jobs run
by the Google Borg Scheduler showed C2

S = 23, 000 [29]. This
study also found that the largest 1% of jobs were responsible
for 99% of the total load (total work). Such high values of
C2

S can easily dwarf the e↵ect of low ⇢, resulting in high
mean delay, despite low utilization.

2. WHAT ARE TECHNIQUES FOR
LOWERING JOB DELAY?

We present three very di↵erent solutions for lowering job
delay.

2.1 Scheduling to Favor Short Jobs
The first solution is scheduling to favor short jobs. Ideally,

one should schedule jobs in Shortest-Remaining-Processing-
Time (SRPT) order, at all times preemptively running the
job that will finish soonest. While SRPT is optimal for any
arrival stream, it turns out that simpler variants of SRPT
work almost as well. For example, one can run SRPT with
only 3 size buckets and obtain similar mean delay [18, 21].
Likewise one could run Preemptive-Shortest-Job-First (PSJF)
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Figure 2: Mean response time, E [T ], as a function of load, under SRPT scheduling compared with FCFS
scheduling. (a) shows a queue with lower job size variability, C2

S = 1 (M/G/1 queue where S is Exponential
with mean 1). (b) shows a queue with higher job size variability, C2

S = 100 (M/G/1 queue where S is two-phase
Hyperexponential with mean 1 and balanced means across the phases). The “M/G/1” notation refers to a
single-server queue with Poisson arrival process and Generally-distributed job sizes.

which performs almost as well. One can also extend SRPT
to a k-server setting, where at all times one runs the k jobs
with shortest remaining processing time [11].

SRPT scheduling has big advantages over FCFS when the
job service requirements have high variability, as shown in
Figure 2, because it ensures that short jobs don’t get stuck
waiting behind long ones. However practitioners are wary
of using SRPT, because they fear that long jobs will be
unduly penalized. In truth, long jobs are not treated unfairly
compared with short ones, provided that the utilization is
not too high (see [5,30]); however these fears are deep-rooted,
and hence SRPT scheduling is not used as often as one would
expect.

2.2 Dispatching to Isolate Short Jobs
An alternative solution is to physically isolate the short

jobs from the long ones. For example, the Size-Interval-Task-
Assignment (SITA) scheme proposed in [7, 15] dispatches
short jobs to one set of servers and long jobs to a second set,
as shown in Figure 3.
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Figure 3: SITA dispatching physically separates short
and long jobs.

SITA greatly decreases mean delay because short jobs
don’t have to wait behind long jobs. In particular, short
jobs only experience the job size variability (and load) of the
other short jobs. The only question that comes up is how to
choose the cuto↵ defining “short” versus “long.” One idea is

to choose the cuto↵ to equalize the load between shorts and
longs, as in SITA-E. For typical computing workloads, where
the largest 1% of jobs comprise most of the load, SITA-E
would send fewer than 1% of jobs to the long-job queue.
One can further optimize the cuto↵ based on the job size
distribution, see [19].

2.3 Pooling Resources
A well-known trick from queueing theory for reducing delay

is simply to pool resources. Figure 4 (left) shows k separate
queues, each with arrival rate �, mean job size E [S], and
load ⇢ = �E [S]. Figure 4(right) shows the k queues pooled
into a single queue with arrival rate k�, where the single
queue is served by the k servers. Pooling does not change
the system load, which is now ⇢ = k�E[S]

k = �E [S], which
is the same as in the original system. However the delay
of the pooled system is far lower than that of the original
system. For example, when job sizes follow an Exponential
distribution, then (see [14, p.270]),

E [Delay of jobs that queue in pooled system] =
1
k�

· ⇢
1� ⇢

.

The point is that, since ⇢ and � are constants, the delay in
the pooled system drops multiplicatively with k. Pooling can
o↵er even more benefit for generally-distributed job sizes,
see [22].
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Figure 4: On the left we see k = 5 separate queues
versus. On the right we see a single pooled queue.



To understand why pooling reduces delay so much, observe
that although each server is still busy ⇢ fraction of the time
on average, the chance that all servers are busy at the same
time goes down. Thus the chance that a job has to queue
drops a lot, and the delay of those jobs that do queue is very
small. Pooling of resources is a very useful tool in systems
design. It not only helps to mitigate delay but also helps to
mitigate many overheads like setup times, see [8, 9].

3. WHAT IF I DON’T KNOW JOB SIZE?
In Section 1, we saw that delay is largely related to job size

variability, which can be very high. In Section 2 we saw that
providing short jobs some isolation from long jobs can be
very helpful in mitigating the e↵ect of high job size variability.
This isolation for short jobs can be obtained either by giving
shorts priority (as in Section 2.1) or by giving short jobs
their own dedicated resources (as in Section 2.2). But what
can we do to minimize delay if we don’t know job sizes a
priori? We first discuss alternative scheduling policies and
then alternative dispatching policies for situations when job
size is not known.
There are many scheduling alternatives to Section 2.1

which don’t require knowledge of job size, yet still combat
job size variability. The simplest idea is Processor-Sharing
(PS) scheduling, which simply time-shares the server among
all jobs in the queue. By allowing all jobs to receive some
quantum of service, shorter jobs will obviate waiting behind
longer jobs. However we can go further than PS by using
knowledge the age of a job, namely the amount of service
that a job has received so far, as a proxy for its remaining
size. Specifically, it is often the case that jobs with lower age
are more likely to complete sooner, while jobs with higher
age are more likely to have high remaining times – this is a
property called Decreasing Hazard Rate (DHR). In the case
of DHR, it pays to rank jobs in terms of their age, giving
priority to jobs with lower age [1]. The algorithm that does
this is called Least Attained Service (LAS), see [13]. If the job
size distribution does not exhibit DHR, one can instead use a
job’s age, together with knowledge of the job size distribution,
to rank jobs in terms of their expected remaining processing
time. Specifically, if S is a random variable denoting a job’s
size, and a is a job’s current age, then one can compute the
job’s expected remaining size as:

E [S � a | S > a] ,

and then schedule to at all times (preemptively) run the
job with the Smallest Expected Remaining Processing Time
(SERPT). The optimal scheduling policy when job sizes are
not known is the Gittins Index policy, which ranks jobs
based on a combination of the job’s expected remaining
size and its probability of completing in the next moment.
While optimal [2, 3, 10,26] the Gittins Index policy is quite
complicated, and, in practice, SERPT typically works just
as well. The exact response time for all these policies (in an
M/G/1 setting) is derived in [28]. All of the above policies
can be generalized to settings with k servers (the M/G/k),
see [11,24, 25].

Figure 5(top) shows a job size distribution, where jobs can
have sizes ranging from 0 to 16, with di↵erent densities. An
individual job’s size is not known, but what is known is a
job’s age, namely the service that a job has received so far.
As we see in Figure 5(bottom), a job’s expected remaining
size changes with its age. At first the expected remaining

size is small, because most jobs have small size (they lie
in the first “hump” of the distribution); but once the age
of a job passes that first hump in the job size distribution,
the expected remaining size increases, and it increases again
when we pass the second hump.

Figure 6 shows the mean response time under di↵erent
scheduling policies (FCFS, PS, SERPT, Gittins, and SRPT)
when job sizes come from the distribution in Figure 5. FCFS,
PS, SERPT, and Gittins assume that job size is not known.
SERPT and Gittins obtain their good performance by using
the expected remaining job size, given in Figure 5(bottom).
As we see, the SERPT policy has performance very close to
that of Gittins, which is optimal. See [27] for more discussion.
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Figure 5: (top) A job size distribution. (bottom) The
expected remaining size of a job as a function of its
age.
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Figure 6: Mean response time as a function of
load, under di↵erent scheduling policies. FCFS, PS,
SERPT, and Gittins assume that job size is not
known. We compare with SRPT scheduling, which
makes use of knowing job size.



There are also dispatching alternatives to the SITA policy
from Section 2.2 which don’t require options which don’t
require knowledge of job size. An example is the Task-
Assignment-by-Guessing-Size (TAGS) dispatching policy [4,
12]. TAGS assumes that all jobs are short, and thus initially
sends all jobs to the queue for short jobs. However TAGS
caps the running time of all jobs at the short job queue; if
the job doesn’t complete within the “short cap” limit, then
the job is restarted at the long job queue. In this way, TAGS
limits the pain that long jobs can inflict on short ones.
Of course the pooling option from Section 2.3 is also an

alternative to SITA that does not require knowing job size.
See [16] and [17] for a discussion on how pooling compares
with SITA-based algorithms.

4. HOW DO I NEGOTIATE IMPORTANCE
VERSUS SIZE?

If certain jobs are more important (more valuable) than
others, the standard solution is to create a priority queue
structure, where jobs of higher importance have higher pri-
ority and can preempt those of lower importance. But what
do we do if the most important jobs all have large remaining
size, while some other less important jobs have very small
remaining size? Are we still getting the most value over time
by strictly favoring the more important jobs?
This question of how to trade o↵ importance and size

has been studied in queueing theory. We define the notion
of a holding cost for a job, which is a rate, in the form of
dollars/second, that the system incurs for not having yet
completed the job. That is, the holding cost of a job is a
rate of money that we’re burning by not doing the job. Jobs
with high holding cost are more “valuable.”

The total holding cost at time t over all jobs is:

TotalHoldingCost(t) =
X

jobs j in the
system at time t

(holding cost of job j) .

Our goal is to minimize expected holding cost, the time-
average of the total holding cost at time t:

E [Holding Cost] = lim
u!1

1
u

Z u

0

TotalHoldingCost(t)dt .

The algorithm for minimizing expected holding cost is
known as the cµ-rule [6], which assigns to each job an index,
where

Index(job) =
Holding cost of job

Remaining size of job
,

and where priority is given to the job of highest index. In
this way, the cµ-rule favors jobs whose holding cost is high
or whose remaining size is small. While the cµ-rule is not
optimal in a worst-case sense, it is optimal in many settings,
including the M/G/1 queue [26].

5. HOW DO ANSWERS CHANGE GIVEN
CLOSED-LOOP ARRIVALS?

Thus far we have assumed that the stream of job arrivals
into our systems is exogenous (external) to the system, mean-
ing that new arrivals are not a↵ected by what’s going on
inside the system. By contrast, some systems obey a closed-

loop arrival model, where new job arrivals are only triggered

by job completions (perhaps followed by some delay, called
the “thinking” time). That is, only when a job completes
does a new job get to enter (after some thinking period). For
such closed-loop configurations, there is typically a limit on
the number of jobs which can be in the system simultaneously,
called the Multi-Programming Level (MPL).
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Figure 7: Graph (copied from [23]) shows mean re-
sponse time for an open and a closed FCFS queue
system as a function of job size variability. The solid
line represents the open system and the dashed lines
represent closed systems with di↵erent MPLs. In all
cases mean job size is E [S] = 10 and ⇢ = 0.9 (for the
open system, we achieve ⇢ by adjusting the arrival
rate �, and for closed systems by adjusting the think
time). We see that closed systems are far less sensi-
tive to the e↵ects of job size variability, particularly
for lower MPL.

As explained in [23], the performance of closed-loop sys-
tems is very di↵erent from open ones, even when both systems
are operated under the same load (utilization) ⇢. Delays in
general are significantly smaller for closed systems. While job
size variability has a huge impact on delay in open systems, it
has much less of an e↵ect on job delay in closed-loop systems
(see Figure 7). Consequently, while scheduling to favor short
jobs (or jobs that are likely to be short) is vital in open
systems, to combat variability, size-based scheduling is far
less important for closed systems. Intuitively, the di↵erence
in closed-loop systems and open ones stems from the fact
that the number of jobs in the closed system is limited to
the MPL. Even if the MPL is high (in the hundreds), the
fact that there’s a limit at all means that the mean delay is
significantly lower in closed systems and the e↵ect of high
job size variability is mitigated – when there are fewer jobs
total, then there are fewer short jobs stuck behind long ones.
Given the stark di↵erences between closed-loop systems

and open ones, it is very important to start every perfor-
mance discussion by understanding what kinds of system
configuration one is dealing with. Likewise, when testing a
system via a workload generator, it is also important to be
cognizant of whether the workload generator is generating
arrivals in a closed loop or exogeneously.
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