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Closed load-independent (LI) QNs
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Closed load-dependent (LD) QNs

Load-dependent demand scalings ax(nk)
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Related work

Solving a load dependent (LD) QN model:
» MVA-LD: load-dependent mean-value analysis
» CA: Load-dependent convolution algorithm
» RECAL: Load-dependent RECAL method
» AMVA: Queue-dependent approximate MVA
>
| 2

ODEs: mean-field approximation for multi-server stations

Exact methods O(N+min(M:R)) in time and space

Approximations can be unstable, feature low accuracy, or work in
special cases only (e.g., multi-server stations).
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Key contributions

We show that if multiclass service demands are load-dependent up
to a finite population limit (limited load-dependence), then:
» Exact solutions factorize into the products of two terms:

1. a factor obtained by solving a model without load-dependence
2. a factor obtained by solving a load-dependent model on a
reduced state space

» The second factor may be effectively approximated using
simpler single-class LD models.

We then develop novel exact and approximate algorithms that
leverage these properties.
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Explicit form for load-independent models

Single-class load-independent (LI) models can be solved explicitly
in O(1) with respect to the number of jobs N.

Let gg(/N) be the single class normalizing constant. If demands are
non-identical then

M gN+M-1
B ; Hk;ﬁ;(ei — 0k)

— How about load-dependent (LD) models?

go(N)
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Explicit form for multi-server models

Gordon (OPRE'90) obtains for multi-server models:
M
-y A (T ()
0<v<s i=1 HJsﬁf 0j = 0j) \ 5 V! Sk

where we define the scaled demands o; = 0;/s; and o = (0;), s;
being the number of servers in node i.

Multi-server models are a special case of limited load-dependent
(LLD) models:

dsy s.t. ax(ng) = const, Ve > si
The results generalizes to LLD models if we set o; = 0;/a;(s;).
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Single-class LLD: our solution

Let hg(N) be the single class LLD normalizing constant. We find:

ho(N) = gs(N —v)®g(v)

0<v<s

where ®g(v) = H,’Y’Zl ¢k(vk), in which

9? . ak(Vk) -
dr(vi) = vak:l ar(j) <1 > fvi>0

1 otherwise

We also find asymptotic expressions as N — oo (cf. paper).
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Multiclass LLD models

We show that the multiclass normalizing constant is obtained from
the single-class one by finite differences, i.e.,

o= 5 g L)

where n = (ny,...,ng) 7. Plugging the explicit form of hg,(N),
we find the following factorization:

Ho(N) = T(N) - Go(N)
—— —— ——
LD norm. const. correction factor LI norm. const.
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LLD correction factor

The LLD correction factor ['(N) is the quantity

14
rn=> > I X7(s)Ee(d)

v=0 d>0: (s,r)eP(d,N)
|d|=v

Here, X7 (N) is the class-r throughput in a LI model with
demands o and P is a sequence of population vectors.

Eo(d) is a LD normalizing constant for a model with at most
V = min(N, ¥, (sk — 1)) jobs.
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Integral forms

We obtain general formulas for LD normalizing constants also
applicable to computing Eg(d).

Since the normalizing constant H(N) is a finite difference, the

Norlund-Rice theorem gives after manipulations

1 27 27
(271_)',_?/0‘ o %h@(tfﬁTt)(N)dt

where 3= N/N, ©(t) = 6 - (e'1,... e®)T and the integrand is
thus a normalizing constant with complex demands.

Hg(N) =

Formulas for the derivatives of th and &h are found to compute
Laplace-type approximations of the above integral.
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Reduction heuristic (RD)

Alternatively, the normalizing constant may be approximated as

where
3(N) = 2; () et

where (v — 1)T = max(0,v — 1), p = X7 (N), and e,(v) is a
single class LD normalizing constant.
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Reduction heuristic (RD)

Reduction heuristic (RD) translates this result to mean-values:

y(N - 1,)
v(N)

The ~(N) scaling factor can be computed with our explicit
formulas or with asymptotic expansions.

X,(N) ~ X7 (N)

RD heuristic validation:
— 1%-6% mean absolute relative error on thousands of models
— Shown typically more accurate than AMVA and fluid ODEs.

13/14



Imperial College
London

Conclusion

Main achievements:
» Exact explicit solution for single-class LLD models
» Factorized solution of multi-class LLD models
» Integral forms for multi-class LLD models (more in the paper)
» Mean-value analysis approximation (RD heuristic)

Further results in the paper:
P Detailed numerical results
» Applications to response time distribution analysis
» Applications to non-product form model approximation

Possible lines for future work:
» Class-dependent scalings

» Whittle networks with closed populations
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