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Closed load-independent (LI) QNs
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Closed load-dependent (LD) QNs
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Hθ(N) also enables performance metric computation.
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Related work

Solving a load dependent (LD) QN model:

I MVA-LD: load-dependent mean-value analysis

I CA: Load-dependent convolution algorithm

I RECAL: Load-dependent RECAL method

I AMVA: Queue-dependent approximate MVA

I ODEs: mean-field approximation for multi-server stations

I . . .

Exact methods O(N1+min(M,R)) in time and space

Approximations can be unstable, feature low accuracy, or work in
special cases only (e.g., multi-server stations).
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Key contributions

We show that if multiclass service demands are load-dependent up
to a finite population limit (limited load-dependence), then:
I Exact solutions factorize into the products of two terms:

1. a factor obtained by solving a model without load-dependence
2. a factor obtained by solving a load-dependent model on a

reduced state space

I The second factor may be effectively approximated using
simpler single-class LD models.

We then develop novel exact and approximate algorithms that
leverage these properties.
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Explicit form for load-independent models

Single-class load-independent (LI) models can be solved explicitly
in O(1) with respect to the number of jobs N.

Let gθ(N) be the single class normalizing constant. If demands are
non-identical then

gθ(N) =
M∑
i=1

θN+M−1
i∏

k 6=i (θi − θk)

→ How about load-dependent (LD) models?
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Explicit form for multi-server models

Gordon (OPRE’90) obtains for multi-server models:

hθ(N) =
∑

0≤v<s

M∑
i=1

σN+M−v−1
i∏
j 6=i (σi − σj)

(
M∏
k=1

θvkk
vk !

(
1− vk

sk

))

where we define the scaled demands σi = θi/si and σ = (σi ), si
being the number of servers in node i .

Multi-server models are a special case of limited load-dependent
(LLD) models:

∃sk s.t. αk(nk) = const, ∀nk ≥ sk

The results generalizes to LLD models if we set σi = θi/αi (si ).

7/14



Single-class LLD: our solution

Let hθ(N) be the single class LLD normalizing constant. We find:

hθ(N) =
∑

0≤v<s

gσ(N − v)Φθ(v)

where Φθ(v) =
∏M

k=1 φk(vk), in which

φk(vk) =


θvkk∏vk

j=1 αk(j)

(
1− αk(vk)

αk(sk)

)
if vk > 0

1 otherwise

We also find asymptotic expressions as N →∞ (cf. paper).
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Multiclass LLD models

We show that the multiclass normalizing constant is obtained from
the single-class one by finite differences, i.e.,

Hθ(N) =
∑

0≤n≤N

(−1)N−n

N1! · · ·NR !

R∏
r=1

(
Nr

nr

)
hθn(N)

where n = (n1, . . . , nR)T . Plugging the explicit form of hθn(N),
we find the following factorization:

Hθ(N)︸ ︷︷ ︸
LD norm. const.

= Γ(N)︸ ︷︷ ︸
correction factor

· Gσ(N)︸ ︷︷ ︸
LI norm. const.
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LLD correction factor

The LLD correction factor Γ(N) is the quantity

Γ(N) =
V∑

v=0

∑
d≥0:
|d |=v

∏
(s,r)∈P(d ,N)

Xσ
r (s)Eθ(d )

Here, Xσ
r (N) is the class-r throughput in a LI model with

demands σ and P is a sequence of population vectors.

Eθ(d ) is a LD normalizing constant for a model with at most
V = min(N,

∑M
k=1(sk − 1)) jobs.
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Integral forms

We obtain general formulas for LD normalizing constants also
applicable to computing Eθ(d ).

Since the normalizing constant H(N) is a finite difference, the
Norlund-Rice theorem gives after manipulations

Hθ(N) =
1

(2π)R

∫ 2π

0
· · ·
∫ 2π

0
<hΘ(t−βT t)(N)dt

where β = N/N, Θ(t) = θ · (e it1 , . . . , e itR )T , and the integrand is
thus a normalizing constant with complex demands.

Formulas for the derivatives of <h and =h are found to compute
Laplace-type approximations of the above integral.
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Reduction heuristic (RD)

Alternatively, the normalizing constant may be approximated as

Hθ(N) ≈ γ(N)Gσ(N)

where

γ(N) =
V∑

v=0

(
N − (v − 1)+

N

)
eρ(v)

where (v − 1)+ = max(0, v − 1), ρ = θXσ(N), and eρ(v) is a
single class LD normalizing constant.
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Reduction heuristic (RD)

Reduction heuristic (RD) translates this result to mean-values:

Xr (N) ≈ γ(N − 1r )

γ(N)
Xσ
r (N)

The γ(N) scaling factor can be computed with our explicit
formulas or with asymptotic expansions.

RD heuristic validation:
→ 1%-6% mean absolute relative error on thousands of models
→ Shown typically more accurate than AMVA and fluid ODEs.
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Conclusion

Main achievements:
I Exact explicit solution for single-class LLD models
I Factorized solution of multi-class LLD models
I Integral forms for multi-class LLD models (more in the paper)
I Mean-value analysis approximation (RD heuristic)

Further results in the paper:
I Detailed numerical results
I Applications to response time distribution analysis
I Applications to non-product form model approximation

Possible lines for future work:
I Class-dependent scalings
I Whittle networks with closed populations
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