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ABSTRACT

Existing load balancing solutions rely on direct or indirect measure-
ment of rates (or congestion) averaged over short periods of time.
Sudden fluctuations in flow rates can lead to significant undershoot-
ing/overshooting of target link loads. In this paper, we make the
case for taking variations and correlations of flows into account in
load balancing. We propose correlation-aware flow consolidation,
i.e. aggregating inversely correlated (or uncorrelated) flows into
superflows and using them as building blocks for load balancing.
Superflows are smoother than individual flows, and thus are easier
to estimate with a higher confidence, and can reduce overshoot-
ing/undershooting of link capacities. We present heuristic methods
combined with predictive models to consolidate flows and show
they can lead to significant reductions in rate standard deviations
compared to correlation-agnostic solutions (up to 33% and 12%
improvements at the 50™ and 99" percentiles respectively for 20
superflows based on real traffic traces).

1. INTRODUCTION

Modern network topologies offer several equal-cost paths be-
tween any pair of source/destination nodes [[16} 1], accommodating
a wide range of workloads from latency-sensitive short-lived flows
(e.g., web-search) to bandwidth-hungry flows (e.g., backup traffic).
To efficiently use these available paths and serve various workloads
with different requirements, a critical component is a load balanc-
ing scheme that can dynamically assign traffic to the existing paths.

There are various load balancing schemes with varying levels of
complexity and flexibility. ECMP is probably the simplest and most
widely used scheme in practice that uses a simple hash to assign
flows to outgoing paths of a given switch [[19]. ECMP and other lo-
cal schemes [[18|/14] deal with hash collisions, packet disorders, and
asymmetric topologies in the absence of global congestion state.
Other schemes aim for global load balancing enforced in a central-
ized controller [2} 20, (34, S]], or in a distributed manner [3} 25]].

A common challenge for these load balancing schemes is the
volatile nature of flows. There is a constant barrage of new flows,
and flow departures, and even during the life-time of a given flow
its rate constantly changes. To deal with this volatility, today’s load
balancing solutions try to adapt themselves based on direct or in-
direct measurements of average utilizations (or congestion) along
different paths. All these solutions, however, are oblivious to sec-
ond degree variations in flow rates.

Correlation-Aware Flow Consolidation. In this paper, we intro-
duce “correlation-aware flow consolidation” as a simple mecha-
nism to enhance existing load balancing solutions. By aggregating
a set of flows (or flowlets 37, 22| |38])) into a number of groups,
i.e. “superflows”, we minimize the collective variations within
each group. Aggregating N independent flows — based on the Cen-
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Figure 1: Flow consolidation example.

tral Limit Theorem [33]] — reduces variations in the aggregate by
O(V/N). For inversely correlated flows, the aggregate might be
even smoother.

The output of this correlation-aware flow consolidation step (i.e.
superflows), can be fed to existing load balancing schemes that are
oblivious to flow variations over time. Using superflows here has
two potential advantages: 1) reducing variations within each group
leads to reducing peak requirements (i.e. eliminating overshooting
of link/path capacities), and 2) reduced variations within each group
helps in estimating future demands of these groups with higher con-
fidence levels.

Example. Consider the simple example in Figure [[|with N = 4
flows consisting of two pairs of inversely correlated ﬂowsﬂ Here,
f1 and f5 have an average rate of 10 and variance of 10, and f3 and
f4 have an average rate of 15 and variance of 15. The consolidation
on the top-right of the figure is correlation-aware in which we ag-
gregate inversely correlated flows, i.e. flows f1 and f> together and
flows f3 and f4 together. We can see that variations in individual
flow rates inside each group mostly cancel each other out, and we
end up with relatively smooth aggregate rates. In the correlation-
agnostic consolidation, shown in the bottom-right, we only consider
the average rate of flows and group f; and f3 together and f> and f4
together. Here, both groups have an average rate of 10 + 15 = 25
which is perfectly balanced on average. However, the high vari-
ance of flows causes much more overshooting/undershooting of the
resources in the correlation-agnostic consolidation.

Challenges. Interdependency-aware scheduling of server work-
loads has been extensively studied in the literature [39, 28] 29, |27,
32]. In particular, Verma et al. [39] propose Correlation Based
Placement (CBP), which assigns workloads to servers based on
the pairwise correlation of different workloads. CBP tries to place
workloads with lower pairwise correlation on the same server to
avoid simultaneous workload peaks.

However, in the networking context, correlation-aware flow con-

"For simplicity, these flows are synthetically generated from 4
Gaussian process distributions. In our evaluations, we use real net-
work traces to show the point is still valid.



solidation is mostly overlooked due to the following challenges.
First, measuring pairwise correlation of flows is more difficult com-
pared to server workloads. The resource requirements of server
workloads are assumed to be available upon arrival in most cases [28]],
but in networks, future flow demand rates are not given a priori.
Second, the real-time nature of correlation-aware flow consolida-
tion makes it very challenging and as a result, such a solution needs
to be extremely fast.

Our Solution. To address the correlation-aware flow consolida-
tion problem, our proposed solution has two main components: a
rate prediction component and a correlation-aware heuristic to ag-
gregate flows. The rate prediction component is responsible for
providing estimates of the flow rates for the next few time slots,
which are used to estimate flow correlations (that are fed to the ag-
gregation algorithm). We note that our objective is not to accurately
predict future rates; our ultimate goal is to get an estimation of fu-
ture rate variations in order to measure flow correlations needed for
aggregation. In our evaluations, we show this is a required step and
we cannot simply rely on past correlations.

The second component is a statistical heuristic algorithm that cal-
culates flow correlations based on the flow rate variations estimated
by the prediction component, and iteratively groups flows with low
correlation.While our goal is to keep the correlation in each group
minimum, another requirement is to dynamically run the algorithm
very fast. Therefore, to avoid quadratic run-time, instead of com-
puting pair-wise correlation among the flows, we define a group
representative, and calculate the correlation of each flow with each
group representative and place flows in groups accordingly.

We use a correlation-aware solution for long-lived flowq’|to have
the opportunity to measure flow correlations. Shorter flows are sim-
ply served in a round-robin (or randomized) manner which is very
effective in terms of balancing the load. Since the majority of the
bytes are usually carried by long-lived flows [23]] (which is the case
in the dataset used for evaluation with 90% of traffic carried by
long-lived flows), the proposed solution seems to lead to consider-
able improvements overall (short-lived and long-lived flows).
Results. Our experiments show that correlation-aware flow consol-
idation leads to significant reduction in the standard deviation of ag-
gregate flows: up to 66% improvement on average in oracle-based
scenarios and 33% improvement on average when using predictive
models based on real traffic traces with more than 500 flows. We
expect these reductions in rate variations would lead to improve-
ment in any load balancing scheme that deals with these smooth su-
perflows. Our experiments also show that the prediction component
is essential for correlation-aware flow consolidation: i.e., simply re-
lying on past observations for estimating correlations gives little or
no improvement in comparison with correlation-agnostic solutions
on a consistent basis. However, adding predictions of future rate
variations significantly improves the results.

We also evaluate the impact of ranging the number of groups
between 2 and 30 and show that the performance of our solution
improves as we increase the number of groups in this range (e.g.
14% improvement as the number of groups is increased from 10 to
20). This is an interesting observation as larger number of groups
gives more flexibility to the load balancing scheme that will be fed
by the output of the flow consolidation. Finally, our run-time evalu-
ation of the proposed solution suggests extremely low overhead and
run-time making the solution feasible in realistic scenarios.

2. CONTEXT

The main premise of this paper is that correlation-aware flow

"Here, long-lived refers to flows that were active in at least two
consecutive epochs, as defined in SectionE}

( Local Controller
Flow
Consolidation (-!

L Agent |

Flow Group
.~ (Rule) (Accion)--—{

Control X |
Plane L, Every .

Topon 5 Flow
Stats

| Multiple
next

C i Lo -2 hop,
Rules
Default )

Round-Robin

Rules

\Iseconds,

1
i

1

1

; .

Z Match | Action | Stats

(a) Local setting.

| Label

Ingress Multiple

____ paths
A

Egress

Flow
Stats
U 1 7
Y . .| Flow Group
Flow 1| (D) | (Label Stack)
Consolidation — -
< Agent J

(b) Global setting.

Figure 2: Local and global load balancing designs with correlation-
aware flow consolidation.

consolidation leads to smoother aggregates that can enhance load
balancing, especially when individual flows are volatile. In this
section, we will set the stage and explain the context.

Flow Correlations. Linear correlation among a pair of flows can be
defined by Pearson correlation coefficient [4, |40]]. A high positive
correlation (closer to 1) represents two flows with similar behaviour
(i.e. synced rates), a negative correlation (closer to -1) represents
flows which are inversely synced, and correlation values close to
zero show linearly independent flows.

Today’s networks carry traffic with all types of correlations. For
instance, distributed learning applications, e.g. federated learning
[21]], create a huge number of positively-correlated flows. Pipeline
applications, e.g. MapReduce [10], lead to negatively correlated
flows corresponding to data transfer of different processing ele-

ments. Furthermore, the network structure also causes positive/negative

correlations in the traffic. As an example, flows passing through the
same set of bottlenecks show inverse correlation as the sum of their
rates is bounded by the bottleneck capacity.

Load Balancing System Design. Here we present our design pro-
posal for using correlation-aware flow consolidation in both local
and global load balancing schemes. Figure[2a]shows a local scheme
combined with correlation-aware flow consolidation for OpenFlow
switches [[31]]. We install a flow consolidation agent (application) in
a controller connected to each OpenFlow switch. This application
receives flow statistics every Tepocn seconds from the switch and
accordingly groups the flows. The output is a mapping from flows
to groups (or superflows). The underlying load balancing scheme
can decide the output port assigned to this superflow.

For global schemes, the goal is to balance the load over leaf-to-
leaf switches or an overlay network illustrated in Figure [2b| using
segment routing protocols [[11]. The flow consolidation agent can
be installed close to the ingress (or source leaf) switch and peri-
odically sends the flow groups to the switch. The ingress switch
chooses a path for each superflow based on the grouping and the
underlying load balancing scheme, and pushes an ordered list of la-
bels to the packet header representing the end-to-end route of the
packet which is used by the segment routing protocol in switches.
We note that this paper focuses on evaluating the main idea to show
its feasibility and potential benefits. Detailed systems level imple-
mentation and evaluation is left as a future work.



3. FLOW CONSOLIDATION PROBLEM

In this section, we formally define the flow consolidation prob-
lem. Let us consider a set of N flows F = {f1,..., fn} that
are going to be balanced over multiple paths (or links).We assume
time is slotted and the demand rate of flow f; € F at time j €
{1,...,T} is represented by rate;(j). We also assume time is
divided into fixed epochs of size Tipoch slots each. We focus on a
given epoch ¢ for the rest of this section (¢ € {0, ..., ﬁ —1}.
For simplicity, we assume 7' is a multiple of Tepoch. Since we
are focusing on the ¢-th epoch, let us represent the rate of flow
fiatthe I-th (I € {1,..., Tepoch}) time slot of the epoch with
ri(l) = rate; (tTepoch + 1).

At the beginning of epoch ¢ (i.e. at the beginning of time slot
t X Tepoch + 1), we consolidate flows into K groups or superflows.
These superflows remain unchanged until the end of the epoch, and
are fed to the underlying load balancing system. We assume all
flow rates for the duration of the epoch are known at the start of the
epoch. Later, we show how to relax this assumption in practice.

Our goal is to find superflows in a way that minimizes the max-
imum aggregate rate of superflows so as to reduce variations when
these superflows are assigned to specific paths. More formally, we
aim to partition the flows in F into K different groups denoted by
G ={q,-..,9x}. We define a function
Group : F — {1,..., K} such that Group(f;) = k implies that
fi € gi during the epoch. We are looking for the solution to the
following mixed integer programming problem:

Ry (1)
S nl) < Rill), 6

1E€EJE
Ve e{l,...,K},Vl € {1,..., Tepocn }-

where Ry (1) corresponds to a hard threshold on the aggregate rate
of the flows assigned to group g (ie. the superflow rate). In other
words, we are seeking a function that minimizes the maximum of
the aggregate rates among all the possible grouping functions.
Computational Complexity. The flow consolidation problem, pre-
sented as a mixed integer program in (T)), is closely related to a well-
known NP-hard problem, namely multi-processor scheduling [[13].
We prove the flow consolidation problem is NP-hard via a reduction
from the multiprocessor scheduling problem. In the multiprocessor
scheduling problem, we have a set of N jobs J = {Ji,...,Jn}
and a set of M processors P = {proc,, ..., proc,,}. Job J; has a
processing time p, € N4. The goal is to assign jobs to the proces-
sors so as to minimize the time required to finish all the jobs. Let
us consider a specific version of our flow consolidation problem
in which we are able to regroup the flows at every time slot (i.e.,
Tepoch = 1). Let us also consider a given instance of the multipro-
cessor scheduling problem. We can map jobs to flows, job process-
ing times to flow rates, and processors to groups. The aggregate
rate of group k, i.e. ), Con r;(1) at time [ is equivalent to the total
processing time of the k-th processor. It is immediate to see that the
solution to the flow consolidation problem is also a solution for the
multiprocessor scheduling problem instance.

Practical Challenge. The silver-lining in the multiprocessor schedul-
ing problem is that it has a % — ﬁ approximation algorithm known
as Longest Processing Time, where M is the number of processors
[[15]. It sorts the jobs based on their descending processing times,
starts with jobs with higher processing times, and assigns jobs to
processors with the lowest end time so far. This solution requires
full knowledge of job processing times a priori. Unfortunately, in
networks, flow rates are not available a priori, so we should relax
the assumption that we know flow rates beforehand.

subject to

4. CORRELATION-AWARE FLOW CONSOL-

IDATION

In this section, we present our solution for the flow consolidation
problem. The main idea is to focus on the variance of the aggre-
gated group rates instead of the maximum rates. By upper bound-
ing this variance, we can provide high probability guarantees for the
maximum rate of each group (using Chebyshev’s inequality [33]]).
As also observed in the example of Figure[T] the aggregated group
rates, shown in black on the top-right, have bounded variances over
time which lead to a reduction in the maximum rate. Therefore, we
convert the optimization problem in (1) into the following problem
aiming to reduce the average of group rate variances:

K
.1 .
Zin e 2 B

subject to S, = {Z ri(1),..., Z 7i(Tepoch) }-
€9y €9k
where Sj; denotes the aggregated rate of Group k during the epoch,
and Vvar[.A] represents the empirical variance of the elements in .A.
In other words, the variance of each group is considered as a “sur-
rogate” cost function for the maximum sum of the flow rates.

To control the variance of the aggregated group rates, we focus
on flow correlations. We present a correlation-aware heuristic that
estimates flow correlations based on the flow rates and accordingly
predicts the optimized groups without accessing future flow rates.
The intuition behind our correlation-aware solution is that the ag-
gregation of independent (or inversely correlated) flows shows less
variance over time and prevents flows peaking at the same time.
Correlation-Aware Heuristic. We present a statistical method for
grouping flows called Lowest Correlation Grouping (LCG). It sorts
the flows into a fixed number of groups K, using the correlation be-
tween flows to decide on the best grouping. We also experimented
with other heuristics using either correlation or variance. However,
our experimental results showed LCG consistently performed best.
To calculate the correlations, a subset of the flow rates in a fixed
window are used. For the remainder of this section, the term corre-
lation refers to correlation of flows measured in this window.

LCG directly sorts the flows into K groups by placing a flow into
the group with which it has the lowest correlation. The algorithm
starts by initializing K empty groups, g1, ..., gk . For each group
g (k € {1,... K}), we maintain a total aggregate flow S, which
is the component-wise sum of the rates of all flows in the group.
The first flow is assigned to g1. Then at each iteration, we calculate
the correlation between f, the next unassigned flow, and S, for all
non-empty groups and denote the minimum computed correlation
as ¢* and the corresponding group as g*. If all the groups are non-
empty, f is assigned to g*. Also, if there are empty groups, but
c* is below a threshold (0.3 in our case), we still assign it to g*.
Otherwise, f is assigned to the next empty group. This procedure
is repeated until all the flows are assigned to one of the K groups.

As discussed in Section 5] the algorithm was first run using the
rates from the previous epoch to group flows in the current epoch.
However, using this rule, we did not see satisfactory performance.
Next, we assumed that we knew the rates in advance and grouped
flows in the current epoch using rates from that epoch. With this
rule, LCG shows significant improvements in performance. As it is
unrealistic to assume we know the rates in advance, we relax this
assumption by using predictors to estimate the rates for the current
epoch based on past rates.

Prediction Component. To have a prediction about the future flow
rates, we examined multiple machine learning models using the
flow rate history. Our predictive models estimate the rates of a
flow f in the current epoch, using the rates of f in the previous
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epoch. Specifically, the models use the start time of f, the rates
of f in each time slot of the previous epoch, as well as the maxi-
mum, mean, standard deviation, and skewness of the past rates [26].
We examined 4 classes of regression models: Random Forest Re-
gression [6]], XGBoost [8]], Ridge Regression [30], and Stochastic
Gradient Descent Regression (SGD) [12].

The first 30% of the epochs are used for training, the next 20%
for validation, and the final 50% for testing. We use only the first
30% of the epochs for training to show that even a small amount
of historical data can help us develop prediction models with an
acceptable performance. The validation set is used to tune hyper-
parameters for the models. For Ridge Regression, the regularization
value is the only hyper-parameter. The regularization parameters
and the learning rate are tuned for SGD. Finally, the tuned hyper-
parameters for Random Forest Regression, are the maximum depth
of the tree and number of trees, and for XGBoost regression, they
are the learning rate, number of additive estimators, and maximum
depth of the estimators. After finding the best hyper-parameters
for each model, the models are trained on train and validation data
again and then kept fixed during the test period. However, as SGD is
an online algorithm, it continues to learn during the testing period.

We measure the quality of the predictions in the validation pro-
cess using R-squared (R?), a common metric in regression analysis
as our prediction performance metric [9} [35]. As flow rates might
be zero during many time slots, we use R” instead of relative error
metrics such as root mean square relative error (rMSRE) [[12].

S. EVALUATION

In this section, we evaluate our correlation-aware consolidation
scheme LCG with a random grouping algorithm, and an oracle-
based correlation-agnostic load balancing solution called Highest
Rate First (HRF). We use the standard deviation of group rates as
our performance metric.

Traffic. We use real data traces collected at the border of an ISP [[17].

We identify flows by the classic 5-tuples, and extract flow-level in-
formation every second from half an hour of the data We ran-
domly select N = 500 flows that have non-zero rates for at least
70% of their sampled rates. We can easily expand our solution to a
data center environment and evaluate it by reducing the time scales.
In the interest of space, we keep this evaluation for future work.

In our experiments, we simulate a scenario in which shared net-
work links cause correlation among flows passing through them.
To this end, we randomly pass each of the 500 flows from one of
30 different paths simulated in ns3 [36]]. We capture flow rates af-
ter passing through these shared paths, and use these captured flow

rates to dynamically group flows in our correlation-aware solutionﬂ

Comparables. We compare the LCG heuristic with a correlation-
agnostic solution HRF, and a random grouping heuristic. Under the

random grouping heuristic, we initialize K empty groups g1, ..., K -

Then, for each flow f, we choose a random number &k € {1, ..., K'}
and assign flow f to group gr. The Highest Rate First (HRF)
scheme is derived from the Longest Processing Time (LPT) rule
for the multiprocessor scheduling problem mentioned in Section 3]
Similar to LPT, we assume the rates for the current epoch are all
known in advance and HRF assigns the flows to groups in decreas-
ing order of average flow rates. Knowing rates in advance is not

3We have selected one second as our time slot unit since collecting
information at sub-second granularity leads to many entries with
zero packets in our dataset. Assuming the input dataset has more
fine-grained granularity, there is no fundamental barrier going to
lower timescales except for our run-time which can be very short.
“Please note that passing flows through shared links is a cause of
correlation among flows. In principle, our solution is capable of
identifying these correlations regardless of their source/cause.
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realistic, but we are using this as a baseline to compare a solu-
tion which only focuses on average rates (even with perfect fu-
ture knowledge) and ignores the rate variances with our correlation-
aware solution LCG. Our goal is to show that LCG without having
knowledge of future rates outperforms HRF with such knowledge.

For all experiments, Tpoch = 5 so that flows are regrouped every

5 time slots. There are a total of 1781 time slots, representing 356
epochs. When running our correlation-aware heuristic, we consider
only flows that were active in at least 1 time slot in the previous
epoch, and denote these as long-lived flows. Thus, short-lived flows
correspond to flows that are active only in the current epoch. As IP
addresses are anonymized and we have no previous rates for these
flows, the best we can do for short-lived flows is to randomly assign
them to groups. Thus, in all experiments, we run our correlation-
aware heuristic on long-lived flows and randomly assign short-lived
flows to groups.
Experiment Results. In our first experiments, we group flows in
the absence of the prediction component explained in section
Figure[3]shows the results when sorting flows into 20 groups. Sim-
ilar results hold for the other group sizes. The figure depicts the
CDF of the mean group standard deviation for each epoch.

‘We have two variations of LCG here. In the first variation, LCG
groups flows using their rates in the previous epoch. That is, starting
from the second epoch, when considering the groups for the ¢-th
epoch, LCG uses the rates from epoch ¢ — 1. In this setting, LCG
outperforms random more than 90% of time, providing a 26.23%
reduction in average standard deviation compared to random at the
50™ percentile. However, it does not perform well at the tail of the
distribution.These values get worse with more groups.This shows
that by simply using rates from the previous epoch, we cannot hope
to perform better than random in all scenarios.

In the second variation, we assume LCG knows the flow rates of
the current epoch in advance. Here, LCG greatly outperforms the
random algorithm. It leads to a reduction in average standard de-
viation when compared to random of 66.64% at the 50" percentile
and an increase of only 0.90% at the 99™ percentile. The results for
the maximum group standard deviation show a similar story. Here,
LCG with current epoch information far outperforms HRF. We note
that HRF is assumed to be oracle-based and has access to all rate
information in advance.

Using Predictive Models. The previous experiments clearly demon-
strate that LCG has the ability to considerably smooth flows com-
pared to the random algorithm. However, to compensate for the
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unrealistic assumption that LCG knows the rates in advance, we in-
stead use predictive models to forecast the rates for the next epoch
using rates from the previous epoch. Of all the predictive models
introduced in Sectionfd] Ridge Regression has the best performance
in terms of decreasing the standard deviation of groupings. Based
on the coefficients of the final ridge regression model, the flow rate
in the last slot and the average of the flow rate are the two most im-
portant features in predicting the future rates of the flow. Figure[d]
shows the results of using LCG with Ridge Regression as a pre-
dictor. The figure again shows CDFs of the mean group standard
deviation across epochs for 20 groups and similar results hold for
the other group numbers examined. LCG outperforms both random
and HRF here, leading to a reduction in average standard deviation
of 33.36% and 12.58% at the 50 and 99™ percentiles, respectively.
We also performed a set of experiments to see the impact of num-
ber of groups on our solution. Figure [5|shows 99" percentile val-
ues of mean standard deviation across different number of groups
for LCG with predictive models, random, and HRF. Each point rep-
resents the percentile of mean standard deviation across all epochs
for the particular algorithm versus the number of groups. These
graphs clearly show that the LCG algorithm outperforms random,
and this improvement becomes more apparent with a larger num-
ber of groups. LCG with a predictive model also outperforms the
oracle-based HRF in most cases here as well.
Run-time Analysis. Let n be the number of flows in a given epoch
t. We consider the run-times for one epoch. The random algorithm
simply selects a group randomly for each flow and so its running
time is O(n). The LCG algorithm places flows into K groups by
calculating a group dependent measure for each group. This re-
quires O(K) work for each flow and O(Kn) work in total.
Figure[f]shows the running times when executing the introduced
heuristics. The plot shows the average run-time across all epochs
for each heuristic with various number of groups. The error bands
represent the 5™ and 95" percentile. These experiments were run
on a personal laptop with an Apple M1 chip and 16GB of RAM.
Moreover, the predictions were run on the same machine that was
running the simulator. In a production setting, the prediction would
likely take place in parallel on a separate machine and the remain-
ing calculations would be performed in a larger compute cluster.
Therefore, we expect the running time of the proposed solution be
acceptable for large number of flows and groups.
Communication Overhead. Given n flows, T¢pocn time slots per
epoch, and d bits for representing a flow rate, the overhead for com-
municating the flow statistics is n X Tepoch X d per epoch which
is negligible and bounded by 500 x 5 x 32 = 80000 bits/epoch in
our experiments.

6. DISCUSSION

Comparison with state of the art load balancing. To the best
of our knowledge, this is the first solution that proactively avoids
undershooting/overshooting of link utilization in load balancing by
taking into account flow variances and predicting flow correlations.
Many load balancing schemes rely on random assignment of pack-
ets [19,7] or flowlets [38}|18]] to possible paths which are congestion-
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oblivious or suffer from topology asymmetry. Other schemes that
take the network congestion state into account, either locally [14],
or globally (3} 25|24} 41]], react based on how close average aggre-
gated rates are to link capacities. These schemes are oblivious to
rate variations and correlations. Our correlation-aware flow consol-
idation solution, however, can provide the load balancing schemes
with smoother aggregate superflows which proactively eliminates
congestion even in time slots less than control loop intervals. We
note that many existing solutions balance at the granularity of flowlets,
pinning an entire flowlet to one link to avoid packet reordering |3,
25]]. This bounds the granularity of these solutions as the decision
must be made based on the first packet of a flowlet. In contrast, our
solution groups flows based on rates which can be sampled at any
granularity desired. In addition, our solution can be used in con-
junction with existing methods. Flows can still be balanced at the
granularity of flowlets, so that different flowlets of the same flow
can be assigned to different paths. Yet, our solution dictates when
flowlets from different flows should be grouped together.

There are two main costs to this solution: 1) the overhead of col-
lecting flow statistics and predicting correlations, and 2) the impact
of reducing the granularity of load balancing as we need to deal
with superflows rather than individual flows. Our preliminary re-
sults show that we can gain significant reductions in load variations
of superflows, with reasonable overhead. The results are even better
for larger number of superflows (up to an extent) which will ensure
enough granularity for the load balancing step. Here, our goal is
to show the potential benefits of the idea, and leave more extensive
evaluations, and more detailed system analysis to future work.
Other Applications. In addition to load balancing, correlation-
aware flow consolidation can improve other settings such as buffer
sizing, power optimization, and even enhancing congestion control.
In each of these scenarios we are dealing with a resource allocation
problem (buffers and bandwidth). Using correlation-aware flow
consolidation can help provide better estimates of needs, making
it easier to allocate resources. There are many interesting problems
here, and we leave them as future work.

7. CONCLUSION AND FUTURE WORK

A major challenge in traffic load balancing is the volatile nature
of flows. To alleviate this problem, we propose correlation-aware
flow consolidation in this paper. The goal is to reduce the fluctu-
ations in aggregate flows by consolidating negatively correlated or
independent flows. Our solution consists of a prediction component
that generates flow rate estimates, and heuristics that use the esti-
mates to compute flow correlations and group low-correlated flows.
Our experiments show we can get significant reduction in the aggre-
gated group standard deviation, and that using predictive models of
flow variations and correlations are essential here.

This is a preliminary work that shows potential benefits of tak-
ing flow variations into account, and its feasibility under reasonable
assumptions. We leave more detailed design and evaluations of var-
ious load balancing schemes using correlation-aware flow consoli-
dation in different environments as well as other applications (e.g.
buffer sizing and power optimization) as future work.
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