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ABSTRACT
The rapid expansion of flash-based solid state drives (SSDs)
makes SSD failure an important factor impacting the re-
liability of storage systems in data centers. To improve
the reliability and stability of storage systems, proactive
failure prediction methods are investigated by researchers.
Based on self-monitoring, analysis and reporting technology
(SMART) logs, machine learning technologies are employed
to improve the accuracy of SSD failure prediction. However,
most of these works fail to achieve high true positive rate
(TPR) or low false positive rate (FPR). Prior works also
suffer from imbalance scale of healthy and failed data, weak
predictability of SMART attributes as well as the variation
issue of SMART distribution range. In order to improve
TPR of SSD failure prediction, failure analysis and predic-
tion methods are researched in this paper. First we conduct
extensive failure analysis work on a dataset collected from
Tencent datacenter. And then based on the analysis re-
sults, we propose a novel SSD failure prediction method.
To address the main challenges of prior works, a new fea-
ture generation method, a random under-sampling based
ensemble learning method (RUS_Ensemble) and a sorting
strategy are proposed accordingly. The evaluation results
on Tencent dataset show that our proposed method is able
to improve TPR by 28%, while bringing a relative low FPR
which is less than 1%.
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1. INTRODUCTION
In this cloud computing and big data era, the reliability

of a cloud storage system relies on the storage devices it
builds on. Flash-based solid state drives (SSDs) as a high-
performance alternative to hard disk drives (HDDs) have
been widely used into storage systems. Both the number
and data capacity of SSDs grow steadily every year. Besides,
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media-level technology is also employed by SSD vendors to
increase the storage density of SSDs. However, increasing
in storage density may bring about decreasing in endurance,
retention, and reliability of SSDs. Therefore, SSDs have
become one of the main sources of failures in datacenters
nowadays. A hyper-scale datacenter with millions of SSDs
faces multiple SSD failures every day, which has a great
impact on reliability of storage systems.

Faced with SSD failures, reactive fault tolerance and proac-
tive failure prediction methods are adopted to improve the
reliability of storage systems. Reactive fault tolerance like
erasure codes and data redundancy mechanisms aims to help
storage application recover from SSD failures. However, the
detection of SSD failures may be behind their occurrence
if only the reactive fault tolerance strategy is employed.
Therefore, proactive failure prediction methods are inves-
tigated to improve the reliability and stability of storage
systems. These methods involve predicting an SSD failure
before it actually happens, and therefore, a disk replacement
advice can thus be informed to the datacenter.

Proactive failure prediction is generally based on SMART
attributes. In recent years, machine learning method is
adopted to build binary classification model on a disk drives
to make proactive failure prediction, and the model is always
built on a large-scale dataset consisting of SMART logs. By
capturing certain prediction rules from large-scale dataset,
the model is able to make proactive failure prediction by
taking a single snapshot of the SMART attributes as the in-
put. Various machine learning methods have been proposed
to improve the accuracy of SSD failure prediction.

Prior study in the field of predicting storage device fail-
ure primarily focuses on traditional HDDs. SMART logs are
originally designed to detect and report various indicators
of drives’ reliability, and therefore, naive threshold-based
method is used for failure prediction. Furthermore, machine
learning methods like Bayesian [8], rank-sum [17] and multi-
instance Naive Bayes (mi-NB) [18] are employed to improve
accuracy of disk failure prediction. But all of these methods
are evaluated on small datasets in their corresponding work.
Anomaly detection methods [24, 22] are also investigated
and adopted in disk failure prediction but they have not im-
proved the situation yet. Recently, tree-based methods [10,



4] are proved to perform well on prediction accuracy and
interpretability. The aforementioned methods do not take
time sequence information into consideration in disk failure
prediction. Most recent studies [25, 7, 11, 13] focus on mod-
eling time sequence dependence and are proved successful in
proactive failure prediction.

Prior techniques and findings for HDDs are not applicable
to SSDs due to fundamental difference in architecture [6].
Research that particularly focusing on SSDs [3, 5, 14, 26]
is limited to specific errors in controlled environment. Sev-
eral studies [16, 21, 9] also analyze the effects of correlated
factors on SSD reliability, but they are aimed at guiding
the design of redundancy protection for high storage relia-
bility. Machine learning method is also adopted by some
works [2, 19] for making proactive failure prediction. But
most of these works fail to achieve high TPR or low FPR.
Additional device-level attributes are used by Farzaneh [15]
and Chandranil [6] to improve the performance of SSD fail-
ure prediction. However, the method is limited to certain
type of SSDs, since the attributes used are not accessible for
all SSDs.

Prior works face the following three major challenges. First,
the scale of healthy SMART observations is many times
larger than that of failed SMART observations, thus pos-
ing data imbalance problem to machine learning methods.
Second, static value of SMART attributes can hardly indi-
cate SSD failures. Third, the distribution range of SMART
attributes varies every day due to different workloads and
application types, and therefore, there is a bias in the output
of failure prediction model. Faced with these three issues,
prior works can only achieve low TPR value. A novel SSD
failure prediction scheme is proposed in this paper to help
improve TPR and bring a relative low FPR value of less
than 1%.

We present an in-depth data-driven analysis on SSD fail-
ure and propose a novel SSD failure prediction method based
on the analysis result. The main contributions of this paper
are as follows:

• Based on a dataset collected from Tencent datacenter,
we conducted extensive analysis on SSD failure. By
categorizing SSD failures into several types, we observe
that there is a distinct failure pattern for each type.

• Based on the analysis result, we propose an SSD failure
prediction solution to improve the performance and
solve the issues in prior works.

• To solve the problem of weak correlation between SMART
attributes and SSD failure, new features are generated
in data pre-processing stage.

• To solve the data imbalance and distribution variation
problem, RUS_Ensemble model and sorting strategy
are proposed in the SMART failure prediction stage.

• A window-based SSD failure prediction is developed
based on the failure prediction results of SMART ob-
servations to decrease FPR.

2. SSD FAILURE ANALYSIS
As mentioned above, the existing SSD failure prediction

solutions fall short in either the performance or generality.

Three major challenges listed above pose significant bottle-
necks to the study of SSD failure prediction. In this section,
extensive analysis is conducted on Tencent dataset for a bet-
ter understanding of SSD failure characteristics, which can
in turn help to optimize our SSD failure prediction solution.
Specifically, time series dependency of SMART observations
is analyzed in this section.

The correlation analysis between static value of SMART
attributes and SSD failures is helpful to the design of the fail-
ure prediction scheme, so we conduct the correlation analysis
on Tencent dataset.In our correlation analysis, the absolute
value of Pearson coefficient is used to measure the corre-
lation between SMART attributes and SSD failures, and
a value close to zero implies weak predictability. Figure
1 shows the correlation coefficient of the top 10 most in-
dicative SMART attributes. It reveals a weak correlation
between SMART attributes and SSD failures.

Figure 1: Correlation analysis of SMART attributes
As the static value of SMART attributes is weakly cor-

related to SSD failures, time series analysis is conducted
to capture the difference in changing trend of healthy and
failed drives. SSD failure may be caused by a variety of
factors and there is also difference in failure symptoms on
SMART attributes. In most cases, there is no idea about the
root causes when SSD failure happens, but we can catego-
rize SSD failures into several types according to their impact
on application layer. In this section we focus on major types
of SSD failures and conduct failure analysis on each type.

Figure 2: Temperature trend of healthy and dropping-out
SSDs

Dropping out: Failure of dropping out accounts for a
large portion of failed data in Tencent dataset. To test
whether the SMART attributes exhibit distinct patterns be-
tween healthy SSDs and dropping-out SSDs, comparative
changing trend of healthy and dropping-out SSDs is plotted.
There is a changing point on time sequence of temperature
or WAF several days before dropping-out failure happens.
Figure 2 shows that the temperature of SSDs with dropping-
out failure increases sharply before actual failure happens,
while the temperature of healthy drives keeps stable between
35℃ to 40℃. Another failure pattern in Figure 3 shows that
as the data units written to or read from SSDs increase, the
WAF value of dropping-out SSDs increases sharply from a



normal value to a relatively large one before actual failure
happens, while the WAF value of healthy SSDs on the same
sever is always keep stable at a normal value. We also notice
that most of SSDs with dropping-out failure exhibit at least
one failure pattern as shown in Figure 2 and Figure 3.

Figure 3: WAF trend of healthy and dropping-out SSDs

Media error: A large number of failed SSDs in Tencent
dataset are of media error type. Media error is caused by
uncorrectable error during a read operation and in SMART
logs there is an indicator attribute (media_error) specifi-
cally for monitoring this kind of failure. As shown in Figure
4, when the data read from or written into SSDs increases,
the value of indicator attribute of failed SSDs with media
error increases accordingly, while that of healthy drives is
always 0. We find that for half of the media error-related
failures, the value of indicator attribute increases sharply
from 0 to a threshold at the time failure happens; for the
other half, the value increases gradually several days before
actual failure. The indicator attribute shows distinct failure
pattern for media error-related failure, but in some cases
this kind of failure pattern lags behind actual failure time.

Figure 4: Trend of workload and indicator attribute for me-
dia error failure

Figure 5: Failure pattern of bad blocks-related failure

Bad blocks: Bad block-related failure is another major
failure in Tencent dataset. As shown in Figure 5, compared
with healthy SSDs there is a changing point on SMART at-
tributes of program_fail_count and available_sapre about
several weeks before bad block-related failure happens. The
two attributes of healthy SSDs always keep at a constant
value, while for bad block-related failed SSDs, there will be
an increasing trend on program_fail_count and deceasing
trend on available_spare. Bad block-related failure happens

when the value of available_spare decreases to a threshold.
The analysis result reveals that this type of failure can be
detected by capturing changing trend of SMART attributes
of program_fail_count and available_spare.

3. THE PROPOSED METHOD
Taking the main challenges mentioned previously into con-

sideration, an SSD failure prediction scheme is proposed in
this paper and detailed description of the scheme will be pre-
sented in this section. As shown in Figure 6, the SSD fail-
ure prediction scheme consists of feature processor, SMART
failure predictor and SSD failure predictor. The SMART
logs collected from client are first sent to feature processor
to construct indicative input for ML model. The output of
feature processor is then fed into SMART failure predictor
to predict failure on SMART observations. Finally, SSD
failure predictor is followed to make final prediction based
on the output of SMART failure predictor.

Figure 6: Block diagram of our proposed failure prediction
scheme

3.1 Feature processor
As mentioned in Section 1, weak predictability of SMART

attributes is one of the main challenges in SSD failure predic-
tion. Based on the time series analysis in Section 2, feature
processor is not only responsible for selecting indicative fea-
tures from SMART attribute but also generating new fea-
tures to capture time series information, thus solving the
weak predictability problem. The feature processor first se-
lects the most important attributes from SMART logs as
the raw features, and then generates new features to cap-
ture time series information. Both the selected raw features
and the generated new features are output to SMART fail-
ure predictor to make failure prediction.

Feature selection is performed at the first step of the fea-
ture processor, since not all of the SMART attributes are
correlated to SSD failure. Indicative features selected in
this process (see Table 1) is based on the failure analysis
result. Raw feature power_on_ours in the table is selected
as the time series indicator and the other 8 features are se-
lected since they are indicative to at least one type of failure
mentioned in Section 2.

To capture time series-related information, feature genera-
tion is performed after the feature selection process. Accord-
ing to the failure analysis result, differential and WAF fea-
tures are generated to improve the predictability of the input
of ML model. As shown in Table 1, differential value of two
types of attributes including workload-related attributes and
temperature is generated to capture time series-related fea-
tures. WAF is also generated in this process by calculating
the ratio of nand_bytes_written to the host_bytes_written.



Table 1: Selected and generated features of feature processor

3.2 SMART failure predictor
SMART failure predictor is responsible for making failure

prediction on SMART observations. It focuses on the data
imbalance and distribution the variation issue of SMART at-
tributes. RUS_Ensemble and sorting strategy are proposed
in this stage to improve the accuracy of failure prediction
on SMART attributes, thus ensuring high accuracy of SSD
failure prediction.

RUS_Ensemble method: The base model selected is
crucial when machine learning technology is employed to
predict SSD failures. In our case, SMART attributes are
weakly correlated to SSD failures and distinct failure pattern
can be captured from time series analysis. Therefore, LSTM
model is selected in this paper to model time series-related
dependency of SMART attributes.

With LSTM as the base model, RUS_Ensemble method is
proposed in this paper to solve the data imbalance problem.
Random under-sampling (RUS) is commonly used to solve
data imbalance by abandoning part of majority-class data.
However, the drawback lies in the loss of data information
caused in RUS process. By combining RUS strategy and
ensemble learning, RUS_Ensemble is proposed to avoid the
loss of data information when dealing with imbalance prob-
lem. The main idea of RUS_Ensemble is to train each of the
n base models with a subset obtained from whole training
set using under-sampling strategy. Since the training set of
base model consists of 1/n of the majority-class data and
the whole minority-class data and the majority-class data
selected by n base models is exclusive, RUS_Ensemble is
able to avoid data information loss when solving imbalance
problem (see Table 2).

Table 2: RUS_Ensemble vs RUS/Ensemble model

Figure 7 shows an overview of the training and predict-
ing phase of RUS_Ensemble method. In the training stage,
ensemble learning is employed to train n base models for
failure prediction. For each base model, RUS strategy is
adopted to construct a training dataset containing 1/n of
majority-class data and whole minority-class data. In addi-

tion, majority-class data is sampled without replacement to
ensure that 1/n of majority-class data selected by each base
model is exclusive. In the predicting phase, each base model
outputs a risk score of the SMART observation and a final
risk score obtained by using averaging strategy is output to
the sorter to predict failure.

Figure 7: Overview of RUS_Ensemble method

Sorting strategy: Failure prediction of SMART obser-
vations is a typical binary classification issue in machine
learning. Conventionally, when using a binary classification
model to predict failure, both the risk score and healthy/failed
type is output by prediction model. In most cases, if the risk
score of a SMART observation it is greater than a certain
threshold (commonly 0.5), it is predicted as failed; other-
wise, predicted as healthy. However, the distribution vari-
ation of SMART attributes problem results from changing
in workload and application type, brings about fluctuation
in risk score. Therefore, predicting failure based on a single
threshold for all SMART observation may lead to perfor-
mance degradation. A higher threshold may result in the
decrease of TPR while a lower one leads to the increase of
FPR.

For a stable storage system we can assume that daily fail-
ure ratio of SSDs and SMART observation is stable. Also,
there is no obvious fluctuation in the distribution of SMART
attributes within a day, as a result, the risk score of almost
all failed observations is greater than that of healthy obser-
vations. Based on these two assumptions, sorting strategy
is proposed to solve distribution variation of SMART at-
tributions. As a post-process strategy, the first step is to
categorize the SMART observations into several buckets ac-
cording to the collection date. For each collection date, we
sort the SMART observations in descending order accord-
ing to the risk score obtained from RUS_Ensemble model,
and give failure prediction for the top p percent (a tunable
parameter) of observations and health prediction for the re-
maining.

3.3 SSD failure predictor
In previous work, an SSD is predicted as failed if the

SMART predictor makes failure prediction for its SMART
observation collected at any time. It would be arbitrary to
trigger an SSD failure alarm based on failure prediction to
each SMART observation, which may lead to the increase of
FPR. Based on this, an SSD failure predictor is introduced
in this paper to predict SSD failure using sliding time win-
dow. The workflow of SSD failure predictor is shown in Fig-
ure 8. For each SSD, SMART logs are collected periodically
and at each collection point in time axis a failure/health pre-



diction is obtained from SMART failure predictor. Then a
time window sliding on time axis is used to predict SSD fail-
ure based on the failure/health prediction of SMART logs.
If the number of failed SMART observations in the time win-
dow is greater than a certain threshold, a failure prediction
of an SSD is triggered.

Figure 8: Workflow of SSD failure predictor

4. RESULTS AND ANALYSIS
To evaluate the performance of our proposed SSD failure

prediction method, extensive experiments are conducted on
Tencent dataset. Our dataset contains SMART data from
over 100,000 drives over a period of about one year. About
60M observations with 40 different SMART attributes are
contained in the dataset. Among the 60M observations,
about 58,702 data samples collected from 114 drives are la-
beled as failed.

In this section, TPR, FPR and AUC score are used to
measure the effectiveness of our approach. TPR represents
the proportion of TP among all actually failed drives. FPR
indicates the ratio of FN among all the healthy drives. Since
the target data of our failure prediction model is highly im-
balanced, AUC score is also used in this paper to evaluate
the performance of different approaches.

To have a comprehensive analysis and evaluation of our
proposed method, extensive tests are conducted. First, we
compare our proposed method with four baselines used in
[22]. And then, the lead time of failure prediction point
with respect to actual failure occurrence point is evaluated
to measure the sensitivity of our proposed method.

4.1 Accurate prediction of SSD failures
Our proposed method is compared against Bayes classi-

fier (Bayes) [20], random forest (RF) [12], gradient boosted
decision tree (GBDT) [23] and LSTM [1], and Table 3 shows
the comparison result. The main drawback of prior works is
that they can only achieve very low TPR value. As the table
shows, LSTM and GBDT can only achieve a TPR less than
10%. Bayes classifier is able to improve TPR to 23% but it
brings about a very high FPR value which is close to 10%.
Compared with prior works, our proposed RUS_Ensemble
method improves TPR value by about 28%, while bringing
a relative low FPR value of less than 1%.

In a datacenter, false positive prediction can also cause
maintenance overhead to datacenters. Limiting FPR into a
relative low level is very important for SSD failure predic-
tion. Except for the Bayes, both our method and prior works
are able to achieve very low FPR which is less than 1%,
which could reduce maintenance cost caused by false posi-
tive prediction. With a low FPR, our method can achieve

Table 3: Comparison of our method and 4 prior works

higher TPR which is 38%. Therefore, the main contribu-
tion of our method is to reduce the cost of SSD failure for
datacenters, only bringing about very low overhead for false
positive prediction.

4.2 Prediction time analysis
To verify whether our proposed method can predict SSD

failure ahead of or behind the actual failure, we also conduct
an evaluation on prediction time and actual occurrence time
of SSD failure. In the evaluation, we categorize the true
positive drives into three groups according to whether the
failure prediction time is ahead of, behind or within the
actual failure day. Figure 9 shows the ratio of true positive
drives of each group. It reveals that only 25% of the true
positive drives is predicated several days ahead of actual
failure, while for most true positive drives, failure prediction
time is either behind or within the actual failure day. Our
further analysis on Tencent dataset explains this result. The
reason may be that a change point on SMART attributes
of failed drives always occurs only a few hours before or
several days after actual failure happens. Therefore, it is
difficult to make failure prediction before actual failure time
by only using SMART attributes. More research should be
done on introducing more internal attributes (like Telemetry
features) to enable early prediction of SSD failure.

Figure 9: Ratio of true positive drives in different prediction
period

5. CONCLUSIONS
In this paper, we provide a comprehensive study of SSD

failure analysis and prediction. Based on a dataset collected
from 100,000 drives over a period of about one year, time
series-related feature of SSD failure is analyzed in this pa-
per. And then based on the failure analysis result, we pro-
pose a novel SSD failure prediction method. In our method,
new features are generated to capture indicative failure pat-
tern of SSDs and RUS_Ensemble model is proposed to solve
data imbalance. Moreover, a sorting strategy is proposed for
post-processing stage to solve distribution variation prob-
lem. Furthermore, extensive test and analysis is conducted
to evaluate the performance of our proposed method. The
result shows that our proposed method is able to improve
TPR value by 28%, while bringing a relative low FPR value
of less than 1%.
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