
Unveiling the potential of Graph Neural Networks for
robust Intrusion Detection

David Pujol-Perich, José Suárez-Varela, Albert Cabellos-Aparicio, Pere Barlet-Ros
Barcelona Neural Networking Center, Universitat Politècnica de Catalunya, Spain

contactus@bnn.upc.edu

ABSTRACT
The last few years have seen an increasing wave of attacks
with serious economic and privacy damages, which evinces
the need for accurate Network Intrusion Detection Systems
(NIDS). Recent works propose the use of Machine Learning
(ML) techniques for building such systems (e.g., decision
trees, neural networks). However, existing ML-based NIDS
are barely robust to common adversarial attacks, which lim-
its their applicability to real networks. A fundamental prob-
lem of these solutions is that they treat and classify flows
independently. In contrast, in this paper we argue the im-
portance of focusing on the structural patterns of attacks,
by capturing not only the individual flow features, but also
the relations between different flows (e.g., the source/desti-
nation hosts they share). To this end, we use a graph rep-
resentation that keeps flow records and their relationships,
and propose a novel Graph Neural Network (GNN) model
tailored to process and learn from such graph-structured
information. In our evaluation, we first show that the pro-
posed GNN model achieves state-of-the-art results in the
well-known CIC-IDS2017 dataset. Moreover, we assess the
robustness of our solution under two common adversarial
attacks, that intentionally modify the packet size and inter-
arrival times to avoid detection. The results show that our
model is able to maintain the same level of accuracy as in
previous experiments, while state-of-the-art ML techniques
degrade up to 50% their accuracy (F1-score) under these
attacks. This unprecedented level of robustness is mainly
induced by the capability of our GNN model to learn flow
patterns of attacks structured as graphs.

Keywords
Cybersecurity, Network Intrusion Detection, Machine
Learning, Graph Neural Networks.

1. INTRODUCTION
Recent years have witnessed a great surge of malicious ac-

tivities on the Internet, leading to major service disruptions
and severe economic and privacy implications. For example,
according to [1] the average cost of a data breach in 2020
was $3.86 million, while cyber attacks had an estimated cost
to the U.S. economy between $57 billion and $109 billion
only during 2016. These figures urge the need for the de-
velopment of effective Network Intrusion Detection Systems

Workshop on AI in Networks and Distributed Systems (WAIN) 2021
Milan,Italy
Copyright is held by author/owner(s).

(NIDS) that can detect – and thus prevent – future attacks.
In this context, a recent body of literature proposes the

use of Machine Learning (ML) techniques as accurate meth-
ods to build NIDS [2, 3]. Indeed, existing solutions often
show an accuracy above 98% when evaluated in popular
IDS datasets. However, despite their good performance, ML
techniques have not yet been widely adopted in commercial
NIDS [4]. We argue that an important reason behind this
lack of adoption is their insufficient robustness against traf-
fic changes, adversarial attacks [5], and generalization over
traffic of other networks, which are crucial factors to achieve
practical ML-based solutions applicable to real networks in
production.

A main limitation of existing solutions is that most of
them treat and classify flows independently, by capturing
meaningful flow-level features that correlate with different
attacks. This assumption, however, does not properly adapt
to numerous real-world attacks that rely on complex multi-
flow strategies (e.g., DDoS, port scans). In this paper, we ar-
gue that, to effectively detect this type of attacks, it is essen-
tial to capture not only the individual features of flows, but
also their relationships within the network. Thus, we pro-
pose a graph representation we call host-connection graphs,
which structures flow relationships in a proper way to then
capture meaningful information about the structural flow
patterns of attacks (e.g., DDoS, port/network scans, brute
force attacks). This is mainly supported by the fact that
many common attacks can be unambiguously characterized
by structural flow patterns that are fixed by the nature of
the attack itself.

In this context, we propose a novel Graph Neural Network
(GNN) model that uses a non-standard message-passing ar-
chitecture, especially designed to process and learn from
host-connection graphs. GNNs [6] are a novel neural net-
work family that is particularly suitable for processing in-
formation inherently represented as graphs (e.g., chem-
istry, computer networks, physics). As a result, our model
shows good capabilities over the graph-structured informa-
tion within host-connection graphs. We provide an open-
source implementation of this model at [7].

In the evaluation, we reveal the potential of the pro-
posed GNN model to achieve robust NIDS solutions. First,
we evaluate our model in the well-known CIC-IDS2017
dataset [8]. Our results show that the proposed model is able
to accurately detect a wide variety of up-to-date attacks,
achieving similar accuracy to state-of-the-art ML techniques
widely used for NIDS (0.99 of weighted F1-score). Then,
we test the robustness of our solution under different com-

Figure 1: Scheme of traditional ML-based NIDS with flow-
based operation.

mon adversarial attacks [5], which are focused on modifying
specific flow features, such as the packet size and the inter-
arrival times. The results show that our GNN-based NIDS
is robust to this type of detection prevention methods com-
monly used by attackers. In contrast, the state-of-the-art
ML benchmarks evaluated significantly decrease their per-
formance, observing degradations of accuracy (weighted F1-
score) up to 50% in our experiments. These results suggest
that the proposed GNN model is able to capture meaningful
patterns from flow relationships, that are more robust to the
adversarial attacks analyzed in this paper.

2. WHY GRAPH-BASED NIDS?
Traditionally, ML-based NIDS leverage supervised-

learning algorithms, such as Decision Trees, Random For-
est, or Support Vector Machines (SVM) to classify the traf-
fic. To train such systems (see Figure 1), first individual
flow records are typically built from traffic captures, includ-
ing some features that can be relevant to then classify flows
(e.g., packet lengths, inter-arrival times, duration). After-
ward, each flow record is labeled according to the attack it
represents. Then, a ML model is trained to classify flows
individually, based on the information contained in their
records.

While this type of models often achieve good accuracy
when trained and evaluated with traffic of the same network,
they are especially vulnerable to adversarial attacks, which
often vary flow features along time to avoid detection. This
limitation becomes particularly evident from the optic of
multi-flow attacks, where it is typically needed to analyze
and relate a set of flows before detecting the malicious action
(e.g., port scans, network scans, DDoS, brute force attacks).

Instead, we argue the importance of capturing and mod-
eling the inter-dependencies between different flows travers-
ing the network, which can be naturally represented in the
form of graphs. As an example, Figure 2 shows graph rep-
resentations of common multi-flow attacks. As we can ob-
serve, these attacks present inherent flow patterns that make
them easily identifiable. For instance, DDoS attacks are dis-
tributed by definition, which means that we can expect a
massive number of connections fx from different hosts ax to
the same target v. Another classic example are port scans,
which involve numerous connections fx from the same host
a to different ports of a same destination host v. Or network
scans, which often involve multiple connections fx to hosts of
the same network vx from a single source a. In these cases,
inspecting flows individually – as most traditional ML-based
NIDS do (Fig. 1) – reasonably hinders the possibility to dis-
criminate such attacks from benign traffic. In practice, some
traditional ML-based NIDS have shown high accuracy lev-
els on these attacks, however this can be arguably explained
by a high degree of over-fitting on the training and valida-
tion datasets, as ML models can eventually learn specific
flow-level features (e.g., average packet size) that are highly

Figure 2: Graph-based representation of well-known attacks.
ax nodes refer to the attackers, vx nodes represent the tar-
gets, and fx nodes represent different flows.

correlated to some attacks. Nevertheless, this makes them
strongly vulnerable to simple variations on malicious flows
(e.g., packet lengths, inter-arrival times, ports), which is a
common practice among attackers.

In light of the above, we claim that learning the underly-
ing structural flow patterns of attacks is essential to achieve
a deeper knowledge and characterization of them, especially
for attacks involving multiple flows. More importantly, rep-
resenting flows and their relations as graphs – as those of
Figure 2 – enables to capture more robust patterns against
potential adversarial attacks, which typically keep the same
flow structure, as it is fixed by the nature of the attack itself.

3. BACKGROUND ON GNN
Graph Neural Networks (GNN) [6] are a recent neural

network family specifically designed to learn and generalize
over graph-structured data, by capturing and modeling the
inherent patterns in graphs. This has resulted in an un-
precedented predictive power in many applications where
data is structured as graphs [9]. This section describes
the basic architecture of Message-Passing Neural Network
(MPNN) [10], which represents a general framework cover-
ing most of the existing state-of-the-art GNN models [9].

MPNN operates over a graph G=(V,E), where every node
v ∈ V is characterized with an initial set of featuresXv, used
to encode its initial hidden-state h0

v (which is represented as
a n-element vector). The MPNN then proceeds with the
message-passing phase, which is repeated a given number
of iterations T . In each message-passing iteration t, every
node v receives a message mv,j from each of its neighbors
j ∈ N(v). Particularly, messages are the result of combin-
ing the hidden states of connected nodes (hv, hj) with a
message function m(·), which is typically approximated by
a neural network and is uniformly applied over all node pairs
in the graph. Then, all the messages received in a node are
combined with an aggregation function a(·), producing a
fixed-size output independently of the number of messages
received (i.e., the number of nodes connected). This ag-
gregation function is often implemented as an element-wise
summation.

Lastly, each node updates its hidden state (hv) based on
the aggregated messages received from its neighbors, using
an update function u(·) also approximated by a neural net-
work.

Formally, the message passing at a given iteration t is
defined as follows:

mv,j = m(ht
v , ht

j , ev,j) (1)

Mt+1
v = a({mv,j | j ∈ N(v)}) (2)

ht+1
v = u(ht

v , Mt+1
v) (3)

Given the final hidden states obtained after T message-
passing iterations, the GNN executes a readout phase. In
this context, a subset of hidden-states – which depends on
the specific GNN model – is passed through a learnable
readout function r(·) that produces the output of the GNN
model. Thus, r(·) is mainly intended to map the final nodes’
hidden-state embeddings (hT

v) to the output labels of the
model (ŷ):

ŷ = r(hT
v | v ∈ V) (4)

As a result, the novel message-passing architecture of
GNNs endows these models with an unprecedented gener-
alization power over graphs of different size and structure.
We refer interested readers to [9] for further details regard-
ing GNNs.

4. PROPOSED GNN-BASED NIDS
This section describes the proposed GNN-based NIDS.

We first present a host-connection graph we use to repre-
sent the traffic, which has enough expressiveness to repre-
sent flow patterns of attacks, such as those depicted in Fig-
ure 2. Then, we describe a novel GNN architecture tailored
to operate over the previous graph. This new GNN model
comprises a non-standard message-passing architecture that
deals with the heterogeneous elements and the particulari-
ties of the network intrusion detection problem.

4.1 Host-Connection Graph Representation
Given a set of flows F , we build a host-connection graph

GF , that includes a node for each distinct host involved,
either sending or receiving traffic. Moreover, each flow is
represented as a node of this graph. Thus, given a flow
f ∈ F , with a source host S, and a destination host D, we
create two undirected edges: one from the source host to
the flow (S → f), and another from the flow node to the
destination host (f → D).

This representation provides enough expressiveness to
properly capture flow patterns of attacks. Particularly, the
host-connection graph comprises relevant aspects of flows,
with focus on their structural features. First, it enables
to differentiate and relate features for the upstream and
downstream traffic of the flow, and second – and more
important – the graph explicitly represents the relations
between different flows, which are connected to the same
source/destination hosts.

Note that a more straightforward representation would be
to consider only hosts as graph nodes, and flows as graph
edges connecting the src/dst hosts. However, the decision to
add specific nodes representing each flow was driven by the
way GNN models operate. Note that GNNs consider only as
learnable objects the hidden states of nodes in input graphs
(as described in Sec. 3). As a result, to properly learn em-
beddings on flows, it is needed to represent them as nodes
of the graph. Note that this graph representation includes
heterogeneous elements (i.e., hosts and flows), which is not
well supported by standard GNN models. This call us to de-
vise a new message-passing architecture specifically adapted
to process and learn the host-connection graph described in
this section.

4.2 GNN model description
This section describes the proposed GNN model, which

comprises a non-standard message-passing algorithm that

Figure 3: Illustration of the message-passing phase of the
proposed GNN-based NIDS.

adapts to the needs of the network intrusion detection prob-
lem, considering as input the host-connection graph repre-
sentation described in Section 4.1.

Let us define ht
i as the hidden state of node i during itera-

tion t, and Xi as the initial features for node hidden states.
In the host-connection graph, nodes can represent a host, or
a flow, so the hidden states of these nodes will be typically
initialized with features of different nature. These features
will depend on the monitoring data accessible in the net-
work. Without loss of generality, let us assume that initial
features areXi = [x0, ..., xk]. In this case, we form the initial
hidden state of flow i as follows:

h0
i = [x0, ..., xk, 0, 0, 0..., 0] (5)

Note that hidden state vectors have a pre-defined length
typically larger than the number of elements in the initial
feature vector. Thus, hidden states are zero-padded.

Alternatively, if node i represents a host, we simply encode
all ones in the initial hidden-state h0

i . In this context, it
is important to avoid identifiers on nodes (e.g., avoid IP
addresses or prefixes to initialize hosts). This would not be
desirable for the model, as the objective is to focus on the
structural flow patterns, thus achieving a more general and
robust characterization of attacks.

We first describe the message-passing phase of the GNN,
which naturally considers the heterogeneity of the graph.
Figure 3 illustrates the message-passing process. Formally,
we apply the following operation in each message-passing
iteration t ∈ [T]:

ati =
1

|N (i)|
∑

j∈N (i)

σtype(h
t
i || ht

j) (6)

ht+1
i = δtype(h

t
i || ati) (7)

First, the model applies a learnable message function
σtype given the concatenation of the hidden states of two
connected nodes –i.e., an edge in the input graph of the
GNN. Here, σtype implicitly comprises two possible func-
tions, which respectively depend on the type of edge where
they are applied: σsf for edges (S → f), and σfd for edges
(f → D), according to the description of the host-connection
graph in Section 4.1.

Afterward, an aggregation function is applied to the mes-
sages computed on each node. For this, we apply an element-
wise mean over messages. In our case, using this function
helps better normalize data across the multiple message-
passing iterations, rather than using a standard element-
wise summation.

Finally, the hidden states are updated considering the in-
formation collected in the new aggregated message. This
is done by applying the update function δtype to the aggre-
gated message and the current hidden state of the node.
Similarly to the message function, δtype comprises two dif-
ferent learnable functions (δh and δf) respectively applied
to update the hosts’ and the flows’ hidden states.

As a result, the σsf , σfd, δh and δf functions are all learn-
able functions than can be approximated by neural networks
during training. Particularly, we implement σsf and σfd as
2-layer fully-connected NNs, while δh and δf are modeled as
Gated Recurrent Units (GRUs [11]).

Finally we define the readout function r(·) as follows:

yi = r(hT
i) (8)

The function r(·) takes as input the final hidden states
of each flow, and outputs the predicted class for the flow
(either a specific attack, or benign traffic). This function is
implemented with a 3-layer fully-connected NN, where the
output classes are represented via a one-hot encoding.

We use ReLU activation functions on all the layers of the
different NNs mentioned above. Except for the last layer of
the r(·) function, which uses a softmax activation. As we
apply this GNN model for multi-class classification, we use
a categorical cross-entropy loss function for training. How-
ever, the model could also be directly used for binary clas-
sification (e.g., classify flows on malicious or benign traffic)
using a binary cross-entropy loss function instead. We set
the number of message-passing iterations to T = 8, and the
size of the hidden states to 128 elements. For additional de-
tails, we refer the interested reader to our publicly available
implementation [7] using the IGNNITION framework [12].

5. EVALUATION
This section presents an evaluation of the proposed GNN-

based NIDS, following two main directions. First, we evalu-
ate the accuracy of the system compared to other state-of-
the-art ML-based NIDS, using the well-known CIC-IDS2017
dataset [8]. Then, we artificially generate some common
adversarial attacks in the previous dataset, to analyze the
robustness of our GNN model compared to the other ML-
based benchmarks.

5.1 Dataset
To evaluate the proposed GNN-based NIDS – described in

Sec. 4– we use the well-known CIC-IDS2017 [8], which con-
tains a representative collection of up-to-date attacks well
mixed with real-world traffic. More in detail, malicious traf-
fic is classified in 7 broad classes of attacks: Brute Force,
Heartbleed, Botnets, DoS, DDoS, Infiltrations and Web at-
tacks. In total, there are 15 different sub-classes of attacks.
Likewise, each flow record aggregates a total of 80 features.
We select a subset of them as input features of the evaluated
models according to feature selection performed in [8].

We evaluate our model with a training and validation
dataset, generated through a random split of 80% and 20%
of graph samples respectively – totaling 895,400 flows for
training, and 223,850 flows for validation. In our experi-
ments, we show the results averaging over 5 cross-validations
following the aforementioned splitting methodology.

Table 1: Weighted F1-Score of different ML-based NIDS
over the CIC-IDS2017 dataset (11 attack classes + Benign
traffic).

Class label MLP AdaBoost RF ID3 Our proposal

Benign 0.67 0.68 0.99 0.99 0.99
SSH-Patator 0.0 0.0 0.99 0.99 0.98
FTP-Patator 0.0 0.0 0.99 0.99 0.99

DoS GoldenEye 0.12 0.0 0.97 0.96 0.99
DosHulk 0.63 0.63 0.99 0.99 0.99

DoS slowloris 0.02 0.0 0.99 0.99 0.98
DoS Slowhttptest 0.01 0.0 0.98 0.98 0.97

DDoS 0.51 0.0 0.99 0.99 0.99
Web-Brute Force 0.0 0.0 0.82 0.76 0.73

Web-XSS 0.0 0.0 0.69 0.65 0.83
Bot 0.0 0.0 0.98 0.98 0.98

Port Scan 0.78 0.0 0.99 0.99 0.99

5.2 Experimental results of the NIDS
This section evaluates the accuracy of the proposed GNN-

based NIDS over the CIC-IDS2017 dataset (Sec. 5.1).
A main difficulty when training ML-based NIDS is that

datasets are inherently imbalanced, having a great bulk of
benign traffic and a small portion of traffic related to at-
tacks. For instance, in the CIC-IDS2017 dataset, malicious
traffic represents only ≈12% of the flows. To address this,
we first apply a pre-processing stage on both the training
and validation datasets. Particularly, we randomly drop
90% of the graphs containing only normal traffic (Benign
class), thus over-representing traffic belonging to attacks.
For the evaluation, we consider only classes with more than
100 flow samples, resulting in 12 different sub-classes. We
tested the use of loss functions specifically designed for im-
balanced datasets (e.g., Focal loss [13]), however we did not
find a significant improvement, finally using a common cat-
egorical cross-entropy loss function.

Table 1 summarizes the accuracy achieved by our GNN-
based NIDS with respect to a collection of ML methods
commonly used in state-of-the-art NIDS. In particular, we
benchmark our solution against a 3-layer Multilayer percep-
tron (MLP) [14], Ada-boost [15], Random Forest (RF) [16]
and ID3 [17]. We use a standard weighted F1-score to mea-
sure the per-class accuracy, which unifies in a single metric
the precision and recall of solutions. From these results, we
can observe that the proposed model achieves a level of accu-
racy comparable to state-of-the-art ML methods, obtaining
a weighted F1-score of 0.99 over all traffic flows.

5.3 Robustness Against Adversarial Attacks
Section 5.2 shows that the proposed GNN-based NIDS

achieves similar accuracy to state-of-the-art ML-based NIDS
over the CIC-IDS2017 dataset. Nevertheless, in Section 2
we discussed the limitations of traditional flow-based ML-
based methods, which can be highly vulnerable to variations
in individual flow features. This section aims to assess the
robustness of the proposed NIDS when facing common ad-
versarial attacks [5].

Typically, the packet size is a highly discriminative fea-
ture for detecting many attacks at the level of individual
flows (e.g., DDoS). In our first experiment, we artificially
increment the packet size of attack-related flows, in order to
test the robustness of the proposed NIDS against this poten-
tial detection prevention method. Figure 4 (top) shows the
evolution of the accuracy (weighted F1-score) as the packet
size of attack-related flows is incremented ([0, 200] bytes).
As we can observe, the proposed GNN model is able to keep

Figure 4: Weighted F1-Score of ML-based NIDS under po-
tential adversarial attacks: variations on the packet size
(top), and inter-arrival times (bottom).

the same level of accuracy as in the experiments of the pre-
vious section, showing robustness to this adversarial attack.
In contrast, the other ML benchmarks suffer a significant
degradation on their accuracy as the packet size increases.

In a second experiment, we make variations on the
throughput of attack-related flows. For this, we artificially
increase the packet inter-arrival times on these flows, so that
they serve traffic at lower rates. Figure 4 (bottom) shows the
results after applying increments to inter-arrival times ([0, 2]
seconds), showing again that the proposed model maintains
its base level of accuracy; while the other ML benchmarks
considerably decrease their weighted F1-score (up to 50%).

Overall, we can observe in Figure 4 that all the baseline
ML models evaluated exhibit strong vulnerability against
common adversarial attacks that modify flow-level features.
In contrast, the proposed GNN model maintains the same
level of accuracy, being completely robust to these detection
prevention methods. This is mainly due to its ability to
capture the structural flow patterns of attacks, which remain
unchanged even after varying flow features.

6. RELATED WORK
The application of ML for intrusion and anomaly detec-

tion has been largely investigated by the research commu-
nity. First, ML-based solutions proposed the use of tradi-
tional ML algorithms, such as K-nearest neighbors (KNN),
Support Vector Machines (SVM), Random Forests (RF), or
a combination of them, to classify network attacks. There
are numerous surveys that cover the vast related work in
this area (e.g., [2, 3, 18, 19]).

More recent works propose also the use of Deep Learning
techniques (i.e., neural networks). For instance, [20] pro-
poses a NIDS that combines Deep Autoencoders and Long
Short-Term Memory (LSTM) cells. In this system, the au-
toencoder learns relevant flow embeddings, which are then
fed to a LSTM model to classify the attacks on flows, by
opportunistically exploiting the temporal dependencies in
the data. Other works such as [21] propose the use of Con-

volutional Neural Networks (CNN) to extract meaningful
information from NIDS data.

Many ML-based NIDS treat and classify traffic flows in-
dependently, which is a limiting factor for the detection of
common multi-flow attacks (e.g., DDoS, network scans) [2].
In this context, some works have explored the representation
of traffic into clusters [22] or graphs [23, 24]. Likewise, some
recent works such as [25, 26] propose the use of graph-based
deep learning to exploit the relationship among network con-
nections, showing significant improvement for malware de-
tection in mobile applications. Similarly, [27] approaches
the problem of Botnet detection assuming visibility of the
full botnet topology. However, none of these previous works
demonstrate robustness against adversarial attacks that pro-
duce variations on flow features to evade detection, such as
the packet size, or throughput (e.g., inter-arrival times).

Recently, some pioneering works started to unveil the po-
tential of GNNs for other network-related problems, such as
network modeling [28, 29], network optimization [30], net-
work planning [31] or network troubleshooting [32, 33]. In
this work, we show that GNNs can also represent a break-
through in the field of network intrusion detection.

7. CONCLUSIONS
In this paper we motivate the use of Graph Neural Net-

works (GNNs) to develop accurate and robust NIDS. We
argue that, to achieve effective ML-based NIDS, it is es-
sential not only to collect relevant patterns on individual
flow features, but also to capture meaningful structural
flow patterns that characterize different attacks (e.g., DDoS,
port/network scans, brute force attacks). To this end, we
first present a graph representation that properly structures
the properties of flows and their relationships in the net-
work. Then, we present a novel GNN architecture specif-
ically designed to learn and generalize over the previous
graph-structured information.

First, we have tested the accuracy of our model, show-
ing comparable results to state-of-the-art ML-based NIDS
in the well-known CIC-IDS2017 dataset. Then, we have
tested the solution against two common adversarial attacks
that intentionally modify relevant flow features on attack-
related flows (packet size and inter-arrival times) to evade
detection. The results show that, while the proposed GNN
model is completely robust to these attacks, state-of-the-
art ML models for NIDS degrade their accuracy up to 50%
(weighted F1-score). This is mainly thanks to the capability
of the proposed GNN model to learn the inherent structural
flow patterns that compose different attacks. These struc-
tural patterns represent a deeper and more robust knowl-
edge about attacks, as they typically remain unchanged over
time, and across different networks.

Acknowledgements
This publication is part of the Spanish I+D+i project
TRAINER-A (ref. PID2020-118011GB-C21), funded by
MCIN/AEI/10.13039/501100011033. This work is also par-
tially funded by the Catalan Institution for Research and
Advanced Studies (ICREA), and by the European Union’s
Horizon 2020 research and innovation programme within
the framework of the NGI-POINTER Project, funded under
grant agreement No. 871528. This article reflects only the
authors’ view; the European Commission is not responsible
for any use that may be made of the information it contains.

References
[1] IBM and the Ponemon Institute. Cost of a Data Breach

Report 2020. https://www.ibm.com/security/data-

breach

[2] Ansam Khraisat, Iqbal Gondal, Peter Vamplew, and
Joarder Kamruzzaman. 2019. Survey of intrusion de-
tection systems: techniques, datasets and challenges.
Cybersecurity 2, 1 (2019), 1–22.

[3] Paulo Angelo Alves Resende and André Costa Drum-
mond. 2018. A survey of random forest based methods
for intrusion detection systems. ACM Computing Sur-
veys (CSUR) 51, 3 (2018), 1–36.

[4] Robin Sommer and Vern Paxson. 2010. Outside the
closed world: On using machine learning for network in-
trusion detection. In IEEE symposium on security and
privacy. 305–316.

[5] Igino Corona, Giorgio Giacinto, and Fabio Roli. 2013.
Adversarial attacks against intrusion detection systems:
Taxonomy, solutions and open issues. Information Sci-
ences 239 (2013).

[6] Franco Scarselli, Marco Gori, Ah Chung Tsoi, Markus
Hagenbuchner, and Gabriele Monfardini. 2008. The
graph neural network model. IEEE transactions on
neural networks 20, 1 (2008), 61–80.

[7] Barcelona Neural Networking center. GNN-NIDS.
https://github.com/BNN-UPC/GNN-NIDS. Accessed
Oct. 20, 2021.

[8] Iman Sharafaldin, Arash Habibi Lashkari, and Ali A
Ghorbani. 2018. Toward generating a new intrusion
detection dataset and intrusion traffic characterization.
ICISSP 1 (2018), 108–116.

[9] Zonghan Wu, Shirui Pan, Fengwen Chen, Guodong
Long, Chengqi Zhang, and S Yu Philip. 2020. A com-
prehensive survey on graph neural networks. IEEE
transactions on neural networks and learning systems
32, 1 (2020), 4–24.

[10] Justin Gilmer, Samuel S. Schoenholz, Patrick F. Riley,
Oriol Vinyals, and George E. Dahl. 2017. Neural Mes-
sage Passing for Quantum Chemistry. In Proceedings
of the International Conference on Machine Learning
(ICML), Vol. 70. 1263–1272.

[11] Junyoung Chung, Caglar Gulcehre, KyungHyun Cho,
and Yoshua Bengio. 2014. Empirical evaluation of gated
recurrent neural networks on sequence modeling. arXiv
preprint arXiv:1412.3555 (2014).

[12] David Pujol-Perich, José Suárez-Varela, Albert
Cabellos-Aparicio, and Pere Barlet-Ros. 2021. IGN-
NITION: Bridging the Gap Between Graph Neural
Networks and Networking Systems. IEEE Network (in
press) (2021).

[13] Tsung-Yi Lin, Priya Goyal, Ross Girshick, Kaiming He,
and Piotr Dollár. 2017. Focal loss for dense object de-
tection. In Proceedings of the IEEE international con-
ference on computer vision. 2980–2988.

[14] Matt W Gardner and SR Dorling. 1998. Artificial neu-
ral networks (the multilayer perceptron)—a review of
applications in the atmospheric sciences. Atmospheric
environment 32, 14-15 (1998), 2627–2636.

[15] Trevor Hastie, Saharon Rosset, Ji Zhu, and Hui Zou.
2009. Multi-class adaboost. Statistics and its Interface
2, 3 (2009), 349–360.

[16] Gérard Biau and Erwan Scornet. 2016. A random forest
guided tour. Test 25, 2 (2016), 197–227.

[17] Badr Hssina, Abdelkarim Merbouha, Hanane Ezzik-
ouri, and Mohammed Erritali. 2014. A comparative
study of decision tree ID3 and C4. 5. International
Journal of Advanced Computer Science and Applica-
tions 4, 2 (2014), 13–19.

[18] Ali A Ghorbani, Wei Lu, and Mahbod Tavallaee. 2009.
Network intrusion detection and prevention: concepts
and techniques. Vol. 47. Springer Science & Business
Media.

[19] Pedro Garcia-Teodoro, Jesus Diaz-Verdejo, Gabriel
Maciá-Fernández, and Enrique Vázquez. 2009.
Anomaly-based network intrusion detection: Tech-
niques, systems and challenges. computers & security
28, 1-2 (2009), 18–28.

[20] Haitao He, Xiaobing Sun, Hongdou He, Guyu Zhao,
Ligang He, and Jiadong Ren. 2019. A novel
multimodal-sequential approach based on multi-view
features for network intrusion detection. IEEE Access
7 (2019), 183207–183221.

[21] Mohammad Mehedi Hassan, Abdu Gumaei, Ahmed Al-
sanad, Majed Alrubaian, and Giancarlo Fortino. 2020.
A hybrid deep learning model for efficient intrusion de-
tection in big data environment. Information Sciences
513 (2020), 386–396.

[22] Sebastian Garcia, Martin Grill, Jan Stiborek, and Ale-
jandro Zunino. 2014. An empirical comparison of bot-
net detection methods. computers & security 45 (2014),
100–123.

[23] Siddharth Bhatia, Bryan Hooi, Minji Yoon, Ki-
jung Shin, and Christos Faloutsos. 2020. Mi-
das: Microcluster-based detector of anomalies in edge
streams. In Proceedings of the AAAI Conference on Ar-
tificial Intelligence, Vol. 34. 3242–3249.

[24] Siddharth Bhatia, Arjit Jain, Pan Li, Ritesh Kumar,
and Bryan Hooi. 2021. MStream: Fast Anomaly De-
tection in Multi-Aspect Streams. In Proceedings of the
Web Conference 2021. 3371–3382.

[25] Peng Xu, Claudia Eckert, and Apostolis Zarras. 2021.
Detecting and categorizing Android malware with
graph neural networks. In Proceedings of the 36th An-
nual ACM Symposium on Applied Computing. 409–
412.

[26] Julian Busch, Anton Kocheturov, Volker Tresp, and
Thomas Seidl. 2021. NF-GNN: Network Flow Graph
Neural Networks for Malware Detection and Classifica-
tion. arXiv preprint arXiv:2103.03939 (2021).

[27] Jiawei Zhou, Zhiying Xu, Alexander M Rush, and Min-
lan Yu. 2020. Automating Botnet Detection with Graph
Neural Networks. arXiv preprint arXiv:2003.06344
(2020).

[28] Krzysztof Rusek, José Suárez-Varela, Albert Mestres,
Pere Barlet-Ros, and Albert Cabellos-Aparicio. 2019.
Unveiling the potential of Graph Neural Networks for
network modeling and optimization in SDN. In Proceed-
ings of the 2019 ACM Symposium on SDN Research.
140–151.

[29] Krzysztof Rusek, José Suárez-Varela, Paul Almasan,
Pere Barlet-Ros, and Albert Cabellos-Aparicio. 2020.
RouteNet: Leveraging Graph Neural Networks for net-
work modeling and optimization in SDN. IEEE Jour-
nal on Selected Areas in Communications 38, 10 (2020),
2260–2270.

[30] Paul Almasan, José Suárez-Varela, Arnau Badia-
Sampera, Krzysztof Rusek, Pere Barlet-Ros, and Al-

bert Cabellos-Aparicio. 2019. Deep reinforcement
learning meets graph neural networks: Exploring
a routing optimization use case. arXiv preprint
arXiv:1910.07421 (2019).

[31] Hang Zhu, Varun Gupta, Satyajeet Singh Ahuja, Yuan-
dong Tian, Ying Zhang, and Xin Jin. 2021. Network
Planning with Deep Reinforcement Learning. In Pro-
ceedings of ACM SIGCOMM 2021.

[32] Zili Meng, Minhu Wang, Jiasong Bai, Mingwei Xu,
Hongzi Mao, and Hongxin Hu. 2020. Interpreting deep
learning-based networking systems. In Proceedings of
ACM SIGCOMM 2020. 154–171.

[33] David Pujol-Perich, José Suárez-Varela, Shihan Xiao,
Bo Wu, Albert Cabellos-Aparicio, and Pere Barlet-Ros.
2021. NetXplain: Real-time explainability of Graph
Neural Networks applied to networking. ITU Journal
on Future and Evolving Technologies (2021).

