
LogStamp: Automatic Online Log Parsing Based on Sequence
Labelling

Shimin Tao, Weibin Meng∗
Huawei
China

Yimeng Chen
Huawei
China

Yichen Zhu
University of Toronto

Canada

Ying Liu
Tsinghua University

China

Chunning Du
Beijing University of Posts and

Telecommunications
China

Tao Han, Yongpeng Zhao,
Xiangguang Wang, Hao Yang

Huawei
China

ABSTRACT
Logs are one of the most critical data for service management. It
contains rich runtime information for both services and users. Since
size of logs are often enormous in size and have free handwritten
constructions, a typical log-based analysis needs to parse logs into
structured format first. However, we observe that most existing
log parsing methods cannot parse logs online, which is essential
for online services. In this paper, we present an automatic online
log parsing method, name as LogStamp. We extensively evaluate
LogStamp on five public datasets to demonstrate the effectiveness
of our proposed method. The experiments show that our proposed
method can achieve high accuracy with only a small portion of the
training set. For example, it can achieve an average accuracy of
0.956 when using only 10% of the data training.

CCS CONCEPTS
• Computer systems organization→ Embedded systems; Re-
dundancy; Robotics; • Networks→ Network reliability.

KEYWORDS
Log Analysis; Log Parsing; AI for Operations; Service Management;
ACM Reference Format:
Shimin Tao, Weibin Meng, Yimeng Chen, Yichen Zhu, Ying Liu, Chunning
Du, and Tao Han, Yongpeng Zhao, Xiangguang Wang, Hao Yang. 2021.
LogStamp: Automatic Online Log Parsing Based on Sequence Labelling. In
WAIN ’21: 3rd International Workshop on AI in Networks and Distributed
Systems, Nov 08–12, 2021, Politecnico Di Milano, Ital. ACM, New York, NY,
USA, 6 pages. https://doi.org/10.1145/1122445.1122456

1 INTRODUCTION
Logs are one of the most valuable data sources for large-scale ser-
vices maintenance[1], which report service runtime status and help
operators to find trace workflows. Logs have been widely applied
∗Weibin Meng (mengweibin3@huawei.com) is corresponding author

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
WAIN ’21, Nov 08–12, 2021, Politecnico Di Milano, Italy
© 2021 Association for Computing Machinery.
ACM ISBN 978-1-4503-XXXX-X/18/06. . . $15.00
https://doi.org/10.1145/1122445.1122456

Jul 10 19:03:03 INFO Interface te-1/1/50, changed state to down

Timestamp: Jul 10 19:03:03
Level: INFO
Template: Interface *, changed state to down
Variable(s): Interface te-1/1/50

Raw log

Parsing

Logging

Log.info (" Interface %s, changed state to down ", InterfaceID)

Structured
parts

Unstructured
parts

Figure 1: An illustrative example of log parsing from source
code of logging to structure log

for a variety of service management and diagnostic tasks. Prior
research has proposed automated approaches to analyze logs, such
as status monitoring [2], anomaly detection [3], failures prediction
[4] and root cause analysis[5]. The fast-emerging AIOps (Artificial
Intelligence for IT Operations) solutions also utilize operation logs
as their input data[6].

Logs are designed by developers and generated by logging state-
ments (e.g., printf (), log.info())) in the source code[7]. As shown in
Fig.1, a logging function is composed of log level (i.e., info), constant
parts (i.e., “Interface” and “change state to down”), and variables (i.e.,
“InterfaceID”). Service and system generate raw logs by printing an
unstructured text that contains constant text and specified variables
(e.g., “te-1/1/50”). Usually, the constant parts sketch out the event
and summarize it, and variables vary from one log to another of
the same template.

Since logs are often extensive in size (e.g., Google and Face-
book respectively generate 100 Petabyte and 10 Petabyte of log
data per month[7]) and have free handwritten constructions[1], log
analysis remains a significant challenge. To address the challenge
of the large size of logs, researchers propose approaches for log
compression[8]. However, most log compression approaches only
aim to save storage space while not assisting when analyzing logs
in practice. To address the challenge of log analysis, using rules (e.g.,
source code[9] and regular expressions[10]) is a simple yet effective
approach. However, the source code is not always available, and

https://doi.org/10.1145/1122445.1122456
https://doi.org/10.1145/1122445.1122456

WAIN ’21, Nov 08–12, 2021, Politecnico Di Milano, Italy Shimin Tao and Weibin Meng, et al.

designing regular expressions relies on domain knowledge, which
cannot be used in practice. Therefore, automatic log parsing meth-
ods are getting attention. Researchers propose many approaches
for automatically parsing raw logs into structured forms[11]. The
main aim of log parsing is to find templates (constant parts) from
logs and replace variables with variable placeholders. Recently,
many data-driven log parsing approaches have been proposed.
There are multiple techniques, such as clustering [12], longest com-
mon subsequence[13], frequent pattern mining[13, 14], heuristics
parsing[15] and others[7]. However, log parsing still faces two
challenges.

Firstly, operators continuously conduct software/firmware up-
grades on services/systems to introduce new features, fix bugs, or
improve performance[7], which can generate new types of logs.
Most of the existing approaches do not support online analysis. A
small number of approaches (e.g., FT-tree[14], LogParse[7]) that
support online parsing also have some shortcomings, or they cannot
handle new types of words, or they need to be combined with other
log parsing algorithms to complete. Therefore, newly generated logs
are difficult to process online .

Besides, most existing log parsing approaches similar group logs
and extracts templates for each group by keeping the same parts
from logs and replacing different parts with placeholders. By default,
log parsing is an unsupervised process. Parsers extract templates
based on provided data instead of domain knowledge. Therefore,
they only produce accurate results with sufficient historical log
data. And, technically, the more data provided, the more accurate
result they return. However, when a brand new service goes online,
there are usually not enough historical logs to generate accurate
templates. Therefore, it’s challenging to train a parsing model with
small amounts of log data.

To address the above challenges, we propose LogStamp. The key
intuition is based on the following observations: When Operations
reads the log, they mentally mark the words in the log to identify
the template. In LogStamp, we turn the log parsing problem
into a sequence labelling problem and find templates from logs
online. LogStamp’s contribution can be summarized as follows:

• LogStamp is an accurate online log parsingmethod. LogStamp
can parse logs one by one, and has extremely high accuracy.

• LogStamp can train an accurate log parsing model based on
a small amount of log data, which ensures that it can analyze
online logs. Experiments show that it can achieve an average
accuracy of 0.956 when using only 10% of the data training.

The rest of the paper is organized as follows: We discuss related
works in Section 2 and propose our approach in Section 3. The eval-
uation is shown in Section 4. In Section 5, we discuss LogStamp’s
limitations and future works. Finally, we conclude our work in
Section 6.

2 RELATEDWORK
Logs play an important role in service management. Log parsing
usually serves as the the first step towards automated log analy-
sis [1].

The most straightforward approach is to use rules to parse logs,
such as regular expressions. The rule-based log parsing methods
rely on handcrafted rules provided by domain knowledge. Though

straightforward, this kind of method requires a deep understanding
of the logs, and a lot of manual efforts are needed to write different
rules for different kinds of logs, which is not general. Commercial
log analytic platforms (e.g., Splunk, ELK, Logentries) also allow
operators to efficiently manage and analyze large-scale logs by pre-
define rules. But they are only applicable to certain types of logs
and are not universal.

Utilizing source code can parse logs accurate. For example, [9]
employs source code to extract log templates for system problem de-
tection. However, the source code is not always available, especially
for commercial services.

To achieve the goal of automated log parsing, many data-driven
approaches have been proposed. There are many categories of log
parsing [1]. The first category is cluster-based approaches, which
log template forms a natural pattern of a group of log messages.
From this view, log parsing can be modeled as a clustering prob-
lem, such as LogSig [16]. Next is longest common subsequence.
For example, Spell [13] uses the longest common subsequence al-
gorithm to parse logs in a stream. Iterative partitioning is used
in IPLoM [15]. Some methods use heuristics to extract templates.
As opposed to general text data, log messages have some unique
characteristics. Consequently, Drain [17] propose heuristics-based
log parsing methods. The next category is frequent item mining,
which is straightforward. Tokens, which regularly appear together
in different log entries, are built into frequent itemsets. The parser
obtains templates by looking up those itemsets. Log templates can
be seen as a set of constant tokens that frequently occur in logs, such
as FT-tree [14]. The final category is combined approaches. Log-
Parse [7] combines existing unsupervised log parsing approaches
and supervised machine learning approaches to generate templates
for online logs. The idea of LogParse is similar to our paper. How-
ever, it’s a pipeline workflow, which will be affected by the accuracy
of traditional log parsing approaches because most log parsing ap-
proaches cannot achieve high accuracy based on a small number
of logs.

3 DESIGN
In this section, we introduce the overall framework of our proposed
LogStamp. The overview of the framework is shown in Fig. 2. We
first present the offline part in our workflow in Section 3.1, then
we will describe the online part in detail in Section 3.2.

3.1 Offline workflow
Given a set of historical logs, our goal is to build a tagger to identify
if the incoming log is a template or variable. Previous works [7]
use the template extraction method to obtain the templates from
the logs. Then, a word classifier (i.e., SVM classifier) is adopted
to label each word in the logs. There are two drawbacks to such
methods. First, the accuracy of labeling depends on the quality of
the extracted template. If the template extraction method fails to
separate the templates from the raw logs, the pseudo label assign
by the classifier would be meaningless and cause failure on log
parsing. Secondly, prior works only utilize templates to train the
word classifier. Generally, log data contains critical information
on both word-level and sentence-level (i.e., sentence order). For
example, in log anomaly detection task, a common way to detect

LogStamp: Automatic Online Log Parsing Based on Sequence Labelling WAIN ’21, Nov 08–12, 2021, Politecnico Di Milano, Italy

Sequence
labeling

Offline

Online
BERT

Clustering

Word
embedding

Sentence
embedding

Labels

Tagger

Templates Variables

Historical
logs

Realtime
logs

BERT

Figure 2: The workflow of LogStamp

the anomalous logs in the log data is to see if the log orders are
correct. If we have received a log saying that "Vlan-interface, change
state to up" and no message of "Vlan-interface, change state to down"
is followed in a certain time period, we will recognize such log as
anomalous log. And because the word-level embedding only focus
on the single word, it fails to effective parse such logs .Therefore,
learning logs feature from the sentence level is important.

In this paper, we introduce a coarse to the fine framework to gen-
erate accurate pseudo labels. First of all, a pretrained bidirectional
transformer is adopted to extract the feature representation of log
data. Because the structure of raw logs is different from the natural
language, we need to fine-tune the BERT [18] using our data. Note
that finetuning the BERT does not need any label. Then we use
a dual-path framework to get both coarse level embedding and
fine level embedding. On the coarse level, we expect the sentence
embedding can reflect the nature of different logs. For instance, the
above example of two logs have similar structure, and most of the
words in these two logs are the same. However, the meaning of
these two logs are completely different. The coarse level feature
learns the inherent relations between the words, thus output two
embeddings with distant similarity. The sentence embedding can
be further grouped into a number of clusters.

In general, one can exploit any clustering algorithm that can split
the sentence into clusters according to their embedding features.
Our approach is to use DBSCAN [19]. After we get the clusters,
we count the frequency of word appearance in each clustering. We
mark it as template if the number of appearance is larger than the
threshold, variables otherwise. As such, we obtain the labels for
each word.

For the fine-grained level, we used the fine-tuned BERT to output
word embeddings. For each word embedding, we have its corre-
sponding label from the step above. Given a set of word embeddings
and word labels, we can train a classifier that serves as a tagger. As
we trained via a deep neural network, this tagger can accurately
parse the logs without the interference introduced by the wrong
pseudo labels.

3.2 Online workflow
In real-time systems, systems may generate new log templates
online; therefore, building a robust online workflow is critical for
real scenario deployment. Our online workflow is simple. Given
real-time logs, which can be either a piece of logging information

Table 1: Detail of the datasets

Datasets Description
HDFS Hadoop distributed file system

Proxifier Proxifier software
ZooKeeper ZooKeeper service

BGL Blue Gene/L supercomputer
Hadoop Hadoop MapReduce job

or a set of new logs, we reuse the BERT model to extract the word
embedding from the new logs. Then the tagger that is trained in
the offline stage will predict a label for the logs. As a result, we
can immediately know whether the specific words are templates
or variables. We will show that our online framework is simple yet
surprisingly effective under most of the circumstance.

4 EVALUATION
In this section, we evaluate our approach using public log datasets
and aim to answer the following research questions:

• RQ1: How effective is LogStamp in log parsing?
• RQ2: Can LogStamp achieve accurate results based on a small
amount of log data?

• RQ3: How much can the BERT and tagger contribute to the
overall performance?

4.1 Experiment Setting
In this section, we evaluate the performance of LogStamp. The
datasets, baselines, evaluation metrics and experimental setup of
the experiments are as follows.

4.1.1 Datasets. We conduct experiments over five public log datasets
from distributed systems, which are BGL [1], HDFS [20], ZooKeeper
[21], Proxifier [1] and Hadoop [12]. The detailed information of
these datasets is listed in Table 1. For each dataset, [1] sampled
logs and manually labelled each log’s template, which serves as the
ground truth for our evaluation.

4.1.2 Baselines. To demonstrate the performance of LogStamp,
we have applied/implemented seven template extraction meth-
ods: FT-tree [14], Drain [17], Spell [13], LogSig [16], LogParse [7],
MoLFI [22] and IPLoM [15] . The parameters of these methods are
all set best for accuracy. LogParse [7] can incorporate any existing

WAIN ’21, Nov 08–12, 2021, Politecnico Di Milano, Italy Shimin Tao and Weibin Meng, et al.

Figure 3: Comparison of the accuracy of offline log parsing between LogStamp and six baselines when they are trained by all
offline logs

Figure 4: Comparison of the accuracy of online log parsing between LogStamp and seven baselines when they are trained by
10% offline logs

template extraction method, our paper utilized Spell to initialize
LogParse.

For BERT, we use three versions of BERT, i.e., BERT-base, BERT-
tiny and BERT-small. For tagger in LogStamp, we compare the
performances of GCN, CNN, LSTM and RNN.

4.1.3 Evaluation Metrics. We apply 𝑅𝑎𝑛𝑑𝐼𝑛𝑑𝑒𝑥 [23] to quantita-
tively evaluate the accuracy of template extraction. 𝑅𝑎𝑛𝑑𝐼𝑛𝑑𝑒𝑥 is
a popular method for evaluating the similarity between two data
clustering techniques or multi-class classifications. What’s more,
𝑅𝑎𝑛𝑑𝐼𝑛𝑑𝑒𝑥 is applied to evaluating existing template extraction
methods in the literature, such as in [7].

For each template extraction method, we evaluate its accuracy
by calculating the 𝑅𝑎𝑛𝑑𝐼𝑛𝑑𝑒𝑥 between the manual classification
results and the templates learned by it. Specifically, among the
template learning results of a specific method, we randomly select
two logs, i.e., 𝑥 and 𝑦, and define 𝑇𝑃,𝑇𝑁, 𝐹𝑃, 𝐹𝑁 as follows. 𝑇𝑃 : 𝑥
and𝑦 are manually classified into the same cluster and they have the
same template; 𝑇𝑁 : 𝑥 and 𝑦 are manually classified into different
clusters and they have different templates; 𝐹𝑃 : 𝑥 and𝑦 are manually
classified into different clusters and they have the same template;
𝐹𝑁 : 𝑥 and 𝑦 are manually classified into the same cluster and they
have different templates. Then 𝑅𝑎𝑛𝑑𝐼𝑛𝑑𝑒𝑥 can be calculated using
the above terms as follows: 𝑅𝑎𝑛𝑑𝐼𝑛𝑑𝑒𝑥 = 𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁 .

4.1.4 Experimental Setup. We conduct experiments on a Linux
server with Intel Xeon 2.40 GHz CPU and 64G memory.

4.2 Evaluation Results
1) RQ1: How effective is LogStamp in log parsing?

We first compare accuracies of existing log parsing methods1 and
LogStamp when we extract templates from historical logs. The com-
parison results are shown in Fig. 3. We find that most log parsing
methods are highly accurate in extracting templates from historical
logs. However, the accuracy of existing parsers is not always con-
sistent. In other words, the selection of log data impacts the parsing
accuracy [1]. Parsers may have a good evaluation result with up
to 90% of accuracy and an unacceptable bad outcome down to 50%
depending on different input datasets (e.g., Proxifier). Meanwhile,
we find LogStamp still achieves high accuracy (the average accu-
racy is more than 0.999) on different datasets. Therefore, we can
directly use the label results to train a tagger.

To demonstrate the performance of LogStamp in supporting
online parsing and simulate the launch of new services, for each
dataset, we apply each log parsing method to extract templates from
10% of their logs. Fig. 4 shows the comparative results. LogStamp

1LogParse’s offline step utilized other log parsing methods. It doesn’t have its own
offline parsing.

LogStamp: Automatic Online Log Parsing Based on Sequence Labelling WAIN ’21, Nov 08–12, 2021, Politecnico Di Milano, Italy

Table 2: Offline accuracy of LogStamp with different BERT
versions

Methods Datasets
HDFS Proxifier Zookeeper BGL Hadoop

BERT-tiny 0.9999 0.9356 0.9998 0.9950 0.9988
BERT-base 0.9999 0.9836 0.9998 0.9994 0.9987
BERT-small 0.9999 0.9840 0.9998 0.9979 0.9988

Table 3: Online accuracy of LogStamp with different BERT
versions

Methods Datasets
HDFS Proxifier Zookeeper BGL Hadoop

BERT-tiny 0.8888 0.9042 0.9906 0.9788 0.9762
BERT-base 0.8798 0.9141 0.9760 0.9816 0.9637
BERT-small 0.9147 0.8820 0.9851 0.9586 0.9752

achieves the best performance. Specifically, the accuracy of LogStamp
on each dataset is 0.956.

2) RQ2: Can LogStamp achieve accurate results based on
a small amount of log data?

As shown in [1], the accuracy of existing parsers is not always
consistent, both for the datasets and the percentage of training data.
To demonstrate how stable LogStamp is to the scale of training
data, Fig. 5 shows the log parsing accuracy of LogStamp on the
five datasets, as the percentage of training data increases from 10%
to 90%, respectively. The results show that LogStamp is stable to
different scales of training logs and can achieve high log parsing
accuracy when trained based on a small scale of training data.

3) RQ3: Howmuch can the BERT and tagger contribute to
the overall performance?

LogStamp incorporates two modules: BERT and taggers. In this
RQ, we evaluate the effectiveness of different version of each mod-
ule. Firstly, we compare LogStampwith BERT-base, BERT-small and
BERT-tiny. Table 2 and Table 3 show the performance of LogStamp
in the offline stage and the online stage, respectively. We find that
three versions of BERT achieve similar performance, which means
that LogStamp doesn’t need to spend time adjusting the effect of
BERT. Then, in Table 4, we compare LogStamp with different tag-
gers, i.e., GCN, RNN, LSTM and CNN. We find that LSTM achieves
the best performance on all datasets. Because LSTM is more suitable
to natural language processing, and sequence labelling is a problem
in natural language processing.

5 DISCUSSION AND FUTUREWORK
Thanks to BERT for its powerful ability to capture both sentence
embedding of log sentences for clustering and word embedding
for distinguishing between templates and variables in log. How-
ever, during experiments, it is observed that syntactic structure
and semantic information contained in log sentences often vary
considerably compared to those sentences used to train BERT. One
deduction is that if the BERT model is fine-tuned on log datasets
with masked language modeling, it might better understand log

Table 4: Online Accuracy of LogStampwith different taggers

Methods Datasets
HDFS Proxifier Zookeeper BGL Hadoop

GCN 0.8888 0.9042 0.9906 0.9788 0.9762
RNN 0.9822 0.9180 0.9790 0.9978 0.9962
LSTM 0.9949 0.9998 0.9998 0.9996 0.9974
CNN 0.9921 0.9164 0.9998 0.9996 0.9974

10% 20% 30% 40% 50% 60% 70% 80% 90%
The ratio of training data

0.5

0.6

0.7

0.8

0.9

1.0

Ra
nd

In
de

x

HDFS
Proxifier
Zookeeper
BGL
Hadoop

Figure 5: The log parsing accuracy of LogStamp as the ratio
of training data changes

sentences and thus have higher accuracy in offline and online log
parsing. Yet, the experiment result does not prove the deduction to
be correct. By fine-tuning the BERT model with log sentences of
each system for 1-3 epochs, the online clustering rand index does
not seem to be steadily improved.

We will continue to study how to apply better pre-trained lan-
guage models to log template extractions in our future work. More
abundant logs will be used to fine-tune BERT or to train a BERT
from the beginning instead of directly loading weights of model
pre-trained with dissimilar vocabularies, e.g., from Wikipedia or
books. Besides, as log sentences usually have a more unified struc-
ture, we will also attempt to design a more concise model structure
based on BERT to achieve higher efficiency in online log parsing to
deal with higher concurrency.

6 CONCLUSION
In this paper, we propose LogStamp, an online log parsing approach.
Different from the prior log parsing approach, LogStamp takes
semantic into consideration and turns the log parsing problem into
a sequence labelling problem. LogStamp supports a training model
based on a small number of historical logs. Experimental results
on public log datasets have validated the accuracy and stability of
LogStamp.

7 ACKNOWLEDGMENT
The work was supported by National Key R&D Program of China
(Grant No. 2018YFB1800405). We thank the anonymous reviewers
for their valuable feedback. We thank Yi Zhou, Yuming Xie and
Ying Qin for their great help.

WAIN ’21, Nov 08–12, 2021, Politecnico Di Milano, Italy Shimin Tao and Weibin Meng, et al.

REFERENCES
[1] Jieming Zhu, Shilin He, Jinyang Liu, Pinjia He, Qi Xie, Zibin Zheng, andMichael R

Lyu. Tools and benchmarks for automated log parsing. In Proceedings of the 41st
International Conference on Software Engineering(ICSE), pages 121–130, 2019.

[2] Subhendu Khatuya, Niloy Ganguly, Jayanta Basak, Madhumita Bharde, and Bivas
Mitra. Adele: Anomaly detection from event log empiricism. IEEE Conference on
Computer Communications (INFOCOM), 2018.

[3] Weibin Meng, Ying Liu, Yichen Zhu, Shenglin Zhang, Dan Pei, et al. Loganomaly:
Unsupervised detection of sequential and quantitative anomalies in unstruc-
tured logs. In Proceedings of the Twenty-Eighth International Joint Conference on
Artificial Intelligence, IJCAI-19., volume 7, pages 4739–4745, 2019.

[4] Shenglin Zhang, Ying Liu,WeibinMeng, Zhiling Luo, Jiahao Bu, Sen Yang, Peixian
Liang, Dan Pei, Jun Xu, Yuzhi Zhang, et al. Prefix: Switch failure prediction in
datacenter networks. Proceedings of the ACM on Measurement and Analysis of
Computing Systems(SIGMETRICS), 2(1):2, 2018.

[5] Satoru Kobayashi, Kensuke Fukuda, and Hiroshi Esaki. Mining causes of network
events in log data with causal inference. In 2017 IFIP/IEEE Symposium on Integrated
Network and Service Management (IM), pages 45–53. IEEE, 2017.

[6] Hetong Dai, Heng Li, Che Shao Chen, Weiyi Shang, and Tse-Hsun Chen. Logram:
Efficient log parsing using n-gram dictionaries. IEEE Transactions on Software
Engineering, 2020.

[7] Weibin Meng, Ying Liu, Federico Zaiter, Shenglin Zhang, Yihao Chen, Yuzhe
Zhang, Yichen Zhu, En Wang, Ruizhi Zhang, Shimin Tao, et al. Logparse: Making
log parsing adaptive through word classification. In 2020 29th International
Conference on Computer Communications and Networks (ICCCN), pages 1–9. IEEE,
2020.

[8] Jinyang Liu, Jieming Zhu, Shilin He, Pinjia He, Zibin Zheng, and Michael R Lyu.
Logzip: Extracting hidden structures via iterative clustering for log compres-
sion. In 2019 34th IEEE/ACM International Conference on Automated Software
Engineering (ASE), pages 863–873. IEEE, 2019.

[9] Wei Xu, Ling Huang, Armando Fox, David Patterson, and Michael I. Jordan.
Detecting large-scale system problems by mining console logs. In ACM Sigops
Symposium on Operating Systems Principles, pages 117–132, 2009.

[10] Weibin Meng, Ying Liu, Shenglin Zhang, Federico Zaiter, Yuzhe Zhang, Yuheng
Huang, Zhaoyang Yu, Yuzhi Zhang, Lei Song, Ming Zhang, et al. Logclass: Anoma-
lous log identification and classification with partial labels. IEEE Transactions on
Network and Service Management, 2021.

[11] Steven Locke, Heng Li, Tse-Hsun Peter Chen,Weiyi Shang, andWei Liu. Logassist:
Assisting log analysis through log summarization. IEEE Transactions on Software

Engineering, 2021.
[12] Qingwei Lin, Hongyu Zhang, Jian-Guang Lou, Yu Zhang, and Xuewei Chen. Log

clustering based problem identification for online service systems. In Proceedings
of the 38th International Conference on Software Engineering Companion (ICSE),
pages 102–111. ACM, 2016.

[13] Min Du and Feifei Li. Spell: Streaming parsing of system event logs. In 2016 IEEE
16th International Conference on Data Mining (ICDM), pages 859–864. IEEE, 2016.

[14] Shenglin Zhang, Weibin Meng, Jiahao Bu, Sen Yang, Ying Liu, Dan Pei, Jun Xu,
Yu Chen, Hui Dong, Xianping Qu, et al. Syslog processing for switch failure diag-
nosis and prediction in datacenter networks. In 2017 IEEE/ACM 25th International
Symposium on Quality of Service (IWQoS), pages 1–10. IEEE, 2017.

[15] Adetokunbo AO Makanju, A Nur Zincir-Heywood, and Evangelos E Milios.
Clustering event logs using iterative partitioning. In Proceedings of the 15th ACM
SIGKDD international conference on Knowledge discovery and data mining, pages
1255–1264. ACM, 2009.

[16] Liang Tang, Tao Li, and Chang-Shing Perng. Logsig: Generating system events
from raw textual logs. In Proceedings of the 20th ACM international conference on
Information and knowledge management, pages 785–794. ACM, 2011.

[17] Pinjia He, Jieming Zhu, Zibin Zheng, and Michael R Lyu. Drain: An online log
parsing approach with fixed depth tree. In 2017 IEEE International Conference on
Web Services (ICWS), pages 33–40. IEEE, 2017.

[18] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-
training of deep bidirectional transformers for language understanding. arXiv
preprint arXiv:1810.04805, 2018.

[19] Martin Ester, Hans-Peter Kriegel, Jörg Sander, Xiaowei Xu, et al. A density-based
algorithm for discovering clusters in large spatial databases with noise. In Kdd,
volume 96, pages 226–231, 1996.

[20] Wei Xu, Ling Huang, Armando Fox, David Patterson, and Michael Jordan.
Largescale system problem detection by mining console logs. Proceedings of
SOSP’09, 2009.

[21] Shilin He, Jieming Zhu, et al. Experience report: System log analysis for anomaly
detection. In 2016 IEEE 27th International Symposium on Software Reliability
Engineering (ISSRE), pages 207–218. IEEE, 2016.

[22] Salma Messaoudi et al. A search-based approach for accurate identification of log
message formats. In Proceedings of the 26th Conference on Program Comprehension,
pages 167–177. ACM, 2018.

[23] William M Rand. Objective criteria for the evaluation of clustering methods.
Journal of the American Statistical association, 66(336):846–850, 1971.

	Abstract
	1 Introduction
	2 Related Work
	3 Design
	3.1 Offline workflow
	3.2 Online workflow

	4 Evaluation
	4.1 Experiment Setting
	4.2 Evaluation Results

	5 Discussion and Future Work
	6 Conclusion
	7 Acknowledgment
	References

