Updating the Theory of Buffer Sizing

Bruce Spang, Serhat Arslan, Nick McKeown

IFIP Performance 2021

o A

—

ASSEMBLY # SERIAL®

| NEW ES02 s |
ES02.DFWO003

ER UNE FABRIC FAN CLK
LY CARD MODULE MODULE IN

(<

WA A L
NN \(\/\1\/\/\/\4\/\«\/\4\/\’\/\.{\/\/\/\/\/\4\/ AA A A A Pt S AN
00000 PE IO O0O 00O OPOOOOOOOOGOOS

How big should a buffer be?

For applications:
Too big: packets wait for too long

Too small: can’t handle bursts

For router manufacturers:
Too big: requires off-chip buffers

Too small: people may not buy the router

How big should a buffer be?

BDP=Bandwidth x Delay
/ # of packets inflight for full utilization

BDP: Jacobson 90, Villamizar and Song 1994
BDP/vn: Appenzeller, McKeown, Keslassy 2004

Since 2004...

2011: PRR breaks usual BDP
argument for Reno

2006: Cubic replaced Reno as

default Linux algorithm 2016: BBR introduced

BBR: Congestion-Based Congestion

CUBIC: A New TCP-Friendly High-Speed TCP Variant - Proportional Rate Reduction for TCP COI‘ItI"Ol

Sangtae Ha, Injong Rhee
Dept of Computer Science

Lisong Xu . . g
O varayof Nebvacka ™ Nandita Dukkipati, Matt Mathis, Yuchung Cheng, Monia Ghobadi Measuring bottleneck bandwidth and round-trip

Namg:m\ir;‘aﬁtcai%ggwersi(y gty 5 e Ay o3
leigh, NC 27695 Lincoln, Nebraska 685t oogle, Inc.
(sha2,rhee)@ncsu.edu xu@cse.unl.edu Mountain View propagation time
_) Calfornia, US A
y) com, toronto.edu
ABSTRACT “high-speed” TCP varians are proposed (o5, FAST [24].
g ,,fu;n v e R g : il st Reed Neal Cardwell, Yuchung Cheng, C. Stephen Gunn, Soheil Hassas
ithm in Linux. The protocol modifies the linear window ¥, the Linux community responded guickly 1o i ABSTRACT Keywords Yeganeh, Van Jacobson
s

fat and long distance ntwerla. 1t s chives more e
anduidth allocatons. smcng Sovs wilh At

56 e e by eakisg e whor g
e ndpondent of KT s thow fow s grow their conges-
tion window at the same rate. During steady state, CUBIC

CUBIC n Linux bas gone through s
paper documents its len
2 ovolution as the default

PP algorithm of Linux

at o majority of these protocols in Linux and ship
them as part of its operating system. After a series of third-
04,

algorithm and the other TCP variants as optional

Wi zakes BIG-TCP sand out rom o TCP s

id-point. intuitively
he current path must
ax window sizes
Al dhangl shnes {5
P acket loss). After
i g ey ke ol st e

TCP, fast recovery, proportional rate reduction, early re-
transmit, retransmission statistics.

Packet ks ncrase nency o Web s, Fst rcovry
mechanism for TCP to recover from packet losses.
1 4 s, e sl the weaknesses o the stan-
dard algorithin described in Rl dtbenmsandst 1. INTRODUCTION
algorithms implemented in Linux. We find that these algo- i
rithms deviate from their intended behavior in the real world Wb tency Plags o Ly role X2 Erodiclog semormime
due to the combined effect of short flows, application stalls, ~ 2PPlications, m i noation ‘ors sl
ot (K e e, 08 to advance new clowd-based applications. There are
e e e e, ordorin® many factorsthat contribute to Web latency including con-
e o o Soovry ten thal i ot optimized fo speed, ineffcient Web servers,
undar high loases, both of-which harm the seet of the flow: 0¥ browasrs, limitad natwark bandwidth, &xcoss lossas and
S0 M ot o suboptimal network protocals. In this paper, we focus on

By all accounts, today's Internet is not moving data as well as it should. Most of
the world's cellular users experience delays of seconds to minutes; public Wi-Fi in
airports and conference venues is often worse. Physics and climate researchers
need to exchange petabytes of data with global collaborators but find their
carefully engineered multi-Gbps infrastructure often delivers at only a few Mbps

over intercontinental distances.®

Since 2004...

2006: Cubic replaced Reno as 2011: PRR breaks usual BDP
default " * . e ce -

~-How big should a
buffer be tod

2016: BBR introduced

ngestion

d round-trip

1as well as it should. Most of

»nds to minutes; public Wi-Fi in
'sics and climate researchers
llaborators but find their

. 2n delivers at only a few Mbps

Our results

Understanding how buffer sizes interact with choices made by TCP:
e Buffer size for full utilization for modern TCP implementations
(PRR, Cubic, BBR, etc...)

e Relationship between buffer size and utilization

Buffers can be made smaller by making better choices

Buffer requirements for a single flow

Algorithm Full Utilization 90% Utilization

Reno BDP 0.80 BDP
Cubic 0.42 BDP 0.28 BDP
BBR 0.25BDP 0.15 BDP

Scalable 0.14 BDP 0.03 BDP

Multiple Reno flows

If buffer is > BDP/vn and [conditions apply] then link will be fully

utilized

Conditions: TCP sends data at a rate that is
1. Uniformly distributed between ¢, BDP/n and ¢, BDP/n
2. Independent

Multiple Reno flows

If n flows share a link and [conditions apply] then:
1. If buffer is = BDP/Vn, link will be fully utilized
2. Utilization is at least 1-Q(1/vh), independent of buffer size

Conditions:
1. Fair: flows send roughly same amount of data

2. Desynchronized: only a few flows decrease windows at same time

Buffer requirements for 10,000 Reno Flows

1. Full utilization if buffer > BDP/100
2. Always have at least 1-1/100=99% utilization

(independent of buffer size!)

Why do we need the two conditions:

1. Fairness

2. No synchronization

Intuition: buffer only needs to handle variability
""""" 7‘""' 2 ""'ﬂ' Buffer size

Standing queue

Queue
depth

Time

Intuition: buffer only needs to handle variability

Queue
depth

NV

Time

Unfairness increases queue variability

If a TCP flow has more data in flight, it will back off more, causing
a larger drop in queue depth (and larger required buffer)

Queue Depth (packets)

bf‘)p in'two Drop in all
fairflows wnfairflow | flows! Lng® @
700 720 740 760 780 800 820 840

Time (ms)

Synchronization increases queue variability

If everyone stops sending data at once, queues will fluctuate more

Queue depth (packets)

'1;3,;;’,,, f“'f‘ Il '?mdw; T

Synced
» Not synced

(®; 100 200 300 400 500
Time (ms)

Queue variability follows vhn rule in testbed

Queue depth distribution
| B=1.0BDP
’J_,-—s/-"/’_’\ 8
//'\\ 16
Unnecessary queue /’\ 64
; 1 128
0] 50 100 150

Queue Depth (packets)

Adding randomness reduces synchronization

Can prove vn results without synchronization condition for:
e BBR

e Reno variant which randomly decreases window

We should only need small buffers

Modern TCP requires smaller buffers than Reno

Relationship between buffers and utilization is a consequence of

congestion control choices

Should be able to get away with buffers of 10-100 packets.

Lots more to understand with buffer sizing!

How are loss and fairness affected by buffer size, even for Reno?
How is application performance impacted by buffer size?

How big a buffer do we need in practice?

