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1. INTRODUCTION
The global economy relies on digital transactions between

entities who do not trust one another. Today, such transac-
tions are handled by intermediaries who extract fees (e.g.,
credit card providers). A natural question is how to build
financial systems that limit the need for such middlemen.

Credit networks (similarly, debit networks) are systems
in which parties can bootstrap pairwise, distributed trust
relations to enable transactions between parties who do not
trust each other. The core idea is that even if Alice does
not trust Charlie directly, if they both share a pairwise trust
relationship with Bob, then Alice and Charlie can execute a
credit- (or debit-) based transaction through Bob. The trust
relationships that comprise such a network can be based
on prior experience or observations (e.g., credit scores in a
credit network), or they can be based on escrowed funds
that are managed either by a third party or an algorithm
(debit networks). Recent debit/credit networks from the
blockchain community establish pairwise trust relationships
through cryptographically secured data structures stored on
a blockchain. Prominent examples include payment channel
networks (PCNs) such as Bitcoin’s Lightning Network.

Fig. 1 depicts the operation of a pairwise trust channel
(or a payment channel) in PCNs. Alice and Bob first cryp-
tographically escrow some number of tokens into a contract
stored on the blockchain that ensures the money can only be
used to transact between them for a predefined time period.
While the channel is active, Alice and Bob can exchange
funds without committing to the public ledger. However,
if the time period expires or either participant closes the
channel, the final state of the channel is committed to the
blockchain. PCNs are a network of these pairwise payment
channels; if Alice wants to transact with Carol, she can use
Bob as a relay and leverage his channel with Carol.

Like traditional communication networks, a central per-
formance metric in credit and debit networks is through-
put: the total number of transactions a credit network can
process per unit time. However, reasoning about credit net-
work throughput is more difficult than in traditional com-
munication networks because of imbalanced channels. That
is, because channels impose upper limits on credit in either
direction, transactions cannot flow indefinitely in one direc-
tion over a channel. For instance, in Fig. 1, once Alice sends
3 tokens to Bob, she cannot send any more tokens to Bob
(or Carol) until Bob sends her some money back.

Imbalanced channels can affect the throughput of credit
networks in unusual ways that depend on topology, user
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Figure 1: Example payment channel network that allows
Alice to send 3 tokens to Carol via Bob.

transaction patterns, and transaction routes. An imbal-
anced channel can harm throughput in other parts of the
network due to dependencies between paths (e.g., an im-
balanced channel blocks a route, which prevents that route
of payments from balancing other channels, blocking more
routes and so on). Certain configurations of imbalanced
channels can even lead to deadlocks where no transactions
can flow over certain edges or even the whole network. Re-
covering from degraded throughput caused by imbalanced
channels requires settlement mechanisms outside of the credit
network, such as performing “on-chain” transactions on the
blockchain to add funds to a channel. These mechanisms
incur higher cost and overhead compared to transactions
within the credit network and should be avoided as much as
possible.

In this work, we study the role of network topology and
channel imbalance on credit network throughput. While
system designers cannot directly control the topology of a
decentralized network, existing PCNs (e.g., Lightning Net-
work) indirectly influence network topology, for example,
with “autopilot” systems that recommend new channels to
participants based on a peer’s channel degree, size, and
longevity. These systems currently lack an understanding of
how network topology and channel imbalance impacts the
throughput in credit networks. Our goal is to bridge this
gap, paving the way for autopilot systems that encourage
high-throughput topologies with minimal deadlocks.

2. KEY RESULTS

2.1 Characterizing Throughput Sensitivity
The first part of our results focuses on the relationship

between throughput sensitivity and channel imbalance. In-
formally, the state b of a credit network refers to the (instan-
taneous) balance allocation on every channel in the network.
In Fig. 1, for example, the state is: (0, 5) on the Alice-Bob
channel and (1, 5) on the Bob-Carol channel (after Alice
sends her payment). The steady-state throughput φ(b) refers
to the highest possible long-term average throughput that
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Figure 2: Example bipartite graph that is peelable and iden-
tifies the lack of deadlock in the above topology.

can be sustained starting from initial state b for a given us-
age pattern and path choices. Throughput sensitivity refers
to whether the steady-state throughput depends on the state
b. This property depends on the topology and demand pat-
tern. For some topologies and demands, the state has little
to no effect on the achieved throughput; in other topologies,
even a slight perturbation of the channel balances can cause
an irrevocable loss in steady-state throughput.

To capture this spectrum, we analyze the best- and worst-
case throughput (Φmin and Φmax) of a credit network across
all possible balance states. A fully-imbalanced channel has
all of its balance moved to one side of the channel, and we de-
fine a fully-imbalanced channel to be deadlocked at a credit
network state if no transaction can be sent on the chan-
nel. Our first result draws a connection between deadlocked
channels and throughput sensitivity.

Theorem 1. If a credit network is deadlock-free, i.e., any
state with one or more fully imbalanced channels can be
moved to a state with no fully-imbalanced channels, the steady-
state throughput φ(b) is the same for all initial states b.

Having established that a deadlock-free topology has con-
stant steady-state throughput, we further show that in topolo-
gies with deadlocks, the credit network state with the largest
deadlock achieves the minimum throughput (Φmin) of the
credit network, while the state with perfect balance on all
channels has the largest throughput (Φmax).

Theorem 2. A state b has the worst steady-state throughput
φ(b) = Φmin (across all states) if it has the largest number
of deadlocked channels across all credit network states.

We formalize and prove the above theorems in our paper [2].

2.2 Peeling Algorithm
The above results suggest that deadlocks completely char-

acterize the throughput sensitivity of a topology. However,
we show that finding a deadlocked state (or showing that
no such state exists) for a topology is NP-hard [2]. Instead,
we propose a “peeling algorithm” inspired by decoding al-
gorithms for erasure codes [1] that can be used to bound the
number of deadlock-free channels in the network.

The peeling algorithm takes as input a credit network
topology and a set of flows (paths) in use. The process

iteratively identifies channels that cannot be deadlocked in
a particular direction, owing to flows that traverse them in
that direction and are not blocked elsewhere. The algorithm
assigns such channels to a fully-imbalanced state in the op-
posite direction in search of a deadlock. Each assignment
removes a channel from consideration as a possible blocker
for flows traversing it in one direction, which may allow more
channel states to be eliminated as a possible deadlock.

We visualize the process using a bipartite graph (Fig. 2)
with flow and channel partitions. Edges connect each chan-
nel to the flows that use it. The connecting edge is colored
red if the flow uses the channel from left to right and blue
otherwise. The peeling process colors each channel node red
or blue (corresponding to one of two fully-imbalanced states)
and determines if either color results in a deadlock. The key
observation is that every flow traversing a single channel
(called flows of length 1) constrains the channel’s possible
deadlocked state to one color. For instance, AB can never
be deadlocked in the red direction (with all tokens on B’s
end) because the blue direction flow PBA can independently
move tokens from B to A. We look for such channels with
flows of length 1, assign their remaining possible deadlock
color, and “peel” those channels from the flows using them
in the un-deadlocked color’s direction. For example, since
AB cannot be deadlocked in the red color direction, flow
PAC (with a red edge to AB) is not constrained by AB.
Therefore, we can remove AB from consideration for PAC ,
reducing its length to 1 . The peeling process then repeats
with the new length 1 flows. If a channel sees conflicting
constraints on its deadlocked states (i.e., flows of length 1
traversing it in both directions), it is declared deadlock-free.
This either happens for all channels in the network (the
credit network is deadlock-free), or the procedure gets stuck
providing a lower bound for the number of deadlock-free
channels.

2.3 Empirical Evaluation
We empirically verify that the bounds provided by the

peeling algorithm on the number of deadlocked channels
are accurate for a variety of topologies. We then use it
to compare the best- and worst-case throughput behaviors
of standard random graph topologies and a subset of the
Lightning Network for randomly-sampled transaction de-
mands. We find that different topologies have different bene-
fits. For example, scale-free graphs have fewer deadlocks and
achieve better worst-case throughput than random regular
and Erdos-Renyi graphs when the network contains fewer
demand pairs, but achieve lower throughput when the net-
work is heavily utilized. We use the evolution of the peel-
ing process to explain these differences. We also take initial
steps towards synthesizing deadlock-resilient topologies with
optimized path length distributions by building on prior ap-
proaches for designing efficient LT codes. We leave details
to the evaluation presented in the extended version [2].
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