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1. INTRODUCTION
Parallelizable workloads are ubiquitous and appear across

a diverse array of modern computer systems. Data centers,
supercomputers, machine learning clusters, distributed com-
puting frameworks, and databases all process jobs designed
to be parallelized across many servers or cores. Unlike the
jobs in more classical models, such as the M/G/k queue,
that each run on a single server, parallelizable jobs are ca-
pable of running on multiple servers simultaneously. When
a job is parallelized across additional servers or cores, the
job receives a speedup and can be completed more quickly.

When scheduling parallelizable jobs, a scheduling policy
must decide how to best allocate servers or cores among the
jobs in the system at every moment in time. This paper de-
scribes and analyzes scheduling policies for systems that pro-
cess an online stream of incoming parallelizable jobs. Given
a set of K servers, we will derive scheduling policies that
minimize the mean response time across jobs — the aver-
age time from when a job arrives to the system until it is
completed.

The difficulty in scheduling parallelizable jobs arises largely
from the fact that a job’s parallelizability is not constant
over time. Across a wide variety of systems, jobs typically
consist of multiple phases, each of which has its own scala-
bility characteristics.

For example, in databases, a single query often alternates
between highly parallelizable phases and non-parallelizable
phases. Specifically, modern databases translate queries into
a pipeline composed of multiple phases corresponding to dif-
ferent database operations [1]. A phase that corresponds to
a sequential table scan is elastic, capable of perfectly paral-
lelizing and completing k times faster when run on k cores.
On the other hand, a phase corresponding to a table join
is inelastic, receiving a severely limited speedup from addi-
tional cores. Figure 1 shows that this phenomenon holds for
a variety of queries from the Star Schema Benchmark [4].

Optimal Phase-Aware Scheduling
This paper focuses on the analysis of the Inelastic-First (IF)
policy first described in [3]. IF gives strict priority to jobs in
inelastic phases, allocating one server to each inelastic phase
and then allocating any remaining servers to the earliest ar-
riving elastic phase. We compare IF to several policies from
the literature. We consider the Elastic-First (EF) policy, also
proposed in [3], which gives strict priority to jobs in an elas-
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Figure 1: Speedup functions for each phase of four queries
from the Star Schema Benchmark. Queries were executed
using the NoisePage database [1]. Phases are either elastic
(highly parallelizable) or inelastic (highly sequential). The
percentages denote the fraction of time spent in each phase
when the query was run on a single core. Despite the queries
spending most of their time in elastic phases, the overall
speedup function of each query is highly sublinear due to
Amdahl’s law.

tic phase. We also compare IF to a phase-unaware policy
called EQUI [2], which divides servers evenly among all jobs
in the system. Finally, we compare IF to a scheduling policy
commonly used in databases [1] called Phase-Aware First-
Come-First-Served (PA-FCFS). PA-FCFS allocates servers to
jobs in first-come-first-served order, but only allocates a sin-
gle server to each job in an inelastic phase. If PA-FCFS has
any servers remaining when it reaches a job in an elastic
phase, this phase receives all remaining servers.

Contributions of This Paper
• We first present a novel model of parallelizable jobs com-

posed of elastic and inelastic phases where the scheduler
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Figure 2: The Markov chain governing the evolution of a
multi-phase job when running on a single server. E refers
to the elastic phase, I refers to the inelastic phase, and C is
the completion state.

knows, at all times, what phase a job is in. Specifically,
we assume that the ordering and sizes of phases for each
job is governed by a Markov chain as shown in Figure 2.

• We prove that IF, which defers parallelizable work by giv-
ing strict priority to jobs which are in an inelastic phase,
is optimal under our model.

• We perform an extensive simulation-based performance
evaluation to illustrate that IF outperforms a range of
scheduling policies. Even in settings that violate the as-
sumptions of our model, IF can perform nearly 30% better
than PA-FCFS and a factor of 3 better than EQUI.

• Lastly, we perform a case study on scheduling in databases
where queries consist of elastic and inelastic phases. In
this setting, the scheduler sometimes has additional infor-
mation about each query beyond just the query’s current
phase. We show how to generalize IF to leverage this
additional information and improve upon state-of-the-art
database scheduling by roughly 50% in simulation. This
case study is omitted from this abstract for brevity.

2. OVERVIEW OF RESULTS
In this section, we provide an overview of the theoretical

and empirical results in our paper.

2.1 Theoretical Results
At a high level, our main theoretical result states that IF

is optimal with respect to mean response time. More specif-
ically, we show that the number of jobs completed by any
point in time under IF stochastically dominates the num-
ber of jobs completed by the same time under any other
algorithm.

Theorem 1. Consider a K server system serving multi-
phase jobs. The policy IF stochastically maximizes the num-
ber of jobs completed by any point in time. Specifically, for
a policy A, let CA(t) denote the number of jobs completed
by time t and let NA(t) denote the number of jobs in the
system at t. Then under any arbitrary arrival time pro-
cess, CIF(t) ≥st CA(t) for all times t ≥ 0. Consequently,
NIF(t) ≤st NA(t) for all times t ≥ 0.

Theorem 1 provides far-reaching results about job response
time. In particular, if the arrival time process is a renewal
process1, we can show that IF minimizes the steady-state
mean response time. We formalize this idea in the following
immediate corollary of Theorem 1.

1By a renewal process, we mean the inter-arrival times tn −
tn−1 are i.i.d., and that the initial phases of jobs pn are i.i.d.
as well.
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Figure 3: The mean response time of EQUI, EF, PA-FCFS, and
IF processing a workload consisting of a mixture of 5 queries
from the Star Schema Benchmark. We assume Poisson ar-
rivals. IF improves upon the next best policy, the PA-FCFS

policy used in the NoisePage database, by up to 30%.

Corollary 2. Suppose the same system setup as in Theo-
rem 1. For any arbitrary policy A, let TA be the steady-state
job response time when it exists. If the arrival time process
is a renewal process, then E [TIF] ≤ E [TA].

Theorem 1 and its corollary show that IF succeeds by
both deferring parallelizable work and working on jobs with
smaller expected remaining sizes. Specifically, while elastic
phases can be completed more quickly by parallelizing across
all servers, there are benefits to keeping elastic phases in the
system. These elastic phases are flexible and can ensure that
all K servers remain utilized. It is also possible to allocate
some servers to inelastic phases without significantly increas-
ing the runtime of an elastic phase. Furthermore, jobs in in-
elastic phases have smaller expected remaining sizes. Hence,
deferring parallelizable work also results in favoring shorter
jobs. For these reasons, the optimal policy, IF, defers as
much parallelizable work as possible without over-allocating
to inelastic phases.

2.2 Overview of Empirical Results
We performed an extensive simulation-based performance

evaluation of IF and several other policies described in the
literature. Figure 3 shows a comparison of these policies
in simulation when processing a workload composed of the
database queries shown in Figure 1. Each of the competitor
policies suffers from its failure to defer parallelizable work.
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