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ABSTRACT
In an EV charging facility, with multiple vehicles request-
ing charge simultaneously, scheduling becomes crucial to
provide adequate service under vehicle sojourn time con-
straints. However, these departure times may not be known
accurately, and typical policies such as Earliest-Deadline-
First or Least-Laxity-First are affected by this uncertainty
in information. In this paper, we analyze the performance
of these policies under uncertain deadlines, using a mean-
field approach. We characterize the deviation in individual
attained service as a function of the uncertainty. Since in-
centives appear to under-report deadlines in order to be pri-
oritized, we analyze a simple modification of the policies to
enforce incentive compatibility. Simulation experiments are
carried out with a practical data set.
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1. INTRODUCTION
The penetration of Electrical Vehicles (EVs) currently un-

der way is demanding the deployment of an adequate charg-
ing infrastructure [4, 7]. In this regard, an attractive op-
tion is to have centralized parking lots with support for EV
charging, for instance at large workplaces. Since the power
demand of EVs is significant, when this mode of transporta-
tion becomes ubiquitous, it seems reasonable to rely on sta-
tistical multiplexing in order to provide adequate service
without the need to design for peak power consumption.
In fact, since EVs may tolerate some deferral of service,
scheduling becomes crucial [8].

In such a facility, a scheduling policy takes into account
users’ sojourn times and charge requirements, and makes de-
cisions on who receives service at any given time. There is
a rich literature on the scheduling of deadline constrained
tasks, particularly in processor task scheduling [9]; more
recently the problem has received renewed attention in a
smart-grid context [6, 11] given the presence of deferrable
loads. The main difference with classical scheduling is that,
while deadlines are strict, partial service (charge) has value.
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In recent work, a queueing approach has been proposed
for this kind of system, akin to a many server queue with
deadlines. In [1, 2], the authors analyze the rate-limited
processor sharing policy, and how to extend it to the network
case. In our prior research [12,13], a general fluid model for
deadline-based policies was proposed, and analytical results
given for their behavior in overload, including in particular
the classical Earliest Deadline First (EDF) and Least Laxity
First (LLF), among others.

The main limitation of such deadline-based policies is that
they require advance knowledge of the exact sojourn time
of customers. In a practical scenario, users have uncertainty
on their departure time, or may even misreport it to affect
their scheduling priority. In this paper, we build on the
mean-field approach of [13] and extend it to include deadline
uncertainty. We provide detailed analysis for the EDF and
LLF policies, in particular of how each EV’s attained service
depends on the reporting error. It is shown that strategic
users may game the system in order to benefit from a larger
service share. We thus also provide a simple variant of the
classical policies that removes those incentives.

The paper is organized as follows: in Section 2 we discuss
our model and summarize the main results for EDF and
LLF from [13]. In Section 3 we discuss the inaccuracy in re-
ported departure times, deriving explicit results for attained
service under a parametric model. Section 4 analyzes incen-
tives. Simulations with a practical data set are presented in
Section 5, and conclusions provided in Section 6.

2. SYSTEM MODEL
Consider a parking lot providing EV homogeneous charg-

ing stations at every spot, with a nominal power rating
(maximum charging rate). We assume that the size of the
parking lot is large and never fills, but electrical power is lim-
ited so that at most C chargers can be on simultaneously.
The scheduling policy must allocate these limited resources
among the EV clients currently present, considering their
energy needs and planned departure times. In this sense,
the system behaves as a many-server queue with deadlines.

Assume that vehicles arrive as a Poisson process of in-
tensity λ, each one having two random characteristics: a
required service or charging time Sk, and a sojourn time
Tk, which is the time until the car leaves the parking lot.
The pairs (Sk, Tk) follow general distributions and we im-
pose Tk > Sk with probability 1, which ensures the demand
of each EV is a priori feasible. We denote by S, T the ran-
dom variables representing the characteristics of a general
vehicle. The system load is given by ρ := λE[S].



In [1], the authors develop a mean-field model for such
a system using the Processor Sharing policy in a large sys-
tem setting: namely λ → ∞ while keeping ρ/C constant.
This mean field model was extended in [12, 13] to encom-
pass all policies that depend on the residual service time
σk and residual sojourn time τk of each vehicle present. In
this paper we will focus on analyzing the mean field model
equilibria as given in [12, 13]. For a relationship between
the mean field model and the stochastic system we refer the
reader to [2].

Consider as an example the Earliest-Deadline-First (EDF)
scheduling policy: here the EVs are ranked in increasing or-
der of their residual sojourn time τ , and the C most urgent
vehicles are served at any given time (with preemption)1,
In [12,13], it is shown that, if the system is in overload, i.e.
ρ > C, the equilibrium solution of the mean field model ex-
hibits a threshold behavior: any EV arriving into the system
acquires priority only when its residual sojourn time reaches
a critical threshold τ∗0 . After that point, it is served at full
rate up to full charge (as represented on the top of Fig. 1) or
deadline expiration. As a consequence, the attained service
for a typical vehicle, S0

a, is given by:

S0
a = min{S, τ∗0 }, (1)

where the threshold τ∗0 follows from imposing the capacity
condition:

λE[S0
a] = λE[min{S, τ∗0 }] = C, (2)

which has a unique solution when ρ > C since E[min{S, τ∗0 }]
↑ E[S] as τ∗0 ↑ ∞.

A similar analysis applies for LLF. In this policy, a vehicle
arrives with a certain laxity L = T − S. As time elapses,
the remaining laxity is given by ` = τ − σ, and vehicles are
ranked in increasing order of `k. In this case, ` may become
negative, meaning that the EV is already late for full service.

In [12,13], it was established that the equilibrium solution
for the mean field limit in overload displays again a thresh-
old behavior. A fixed threshold `∗0 determines the laxity at
which vehicles start service. In overload, `∗0 < 0 meaning
that all vehicles are behind schedule. A typical trajectory
is depicted in the second diagram of Fig. 1. An EV arriv-
ing at time t consumes its laxity and begins service at time
t+L− `∗0, receiving a total service time T −L+ `∗0 = S+ `∗0.
If a vehicle has S + `∗0 < 0, its laxity never becomes urgent
enough and it receives no service at all. Defining σ∗0 = −`∗0,
the attained service is given by:

S0
a = (S − σ∗0)

+
, (3)

Again the threshold is determined by the capacity condition:

λE[S0
a] = λE

[
(S − σ∗0)

+
]

= C, (4)

which has a unique solution since the left hand side decreases
monotonically from ρ to 0 as σ∗0 ↑ ∞.

It turns out that EDF and LLF operate as dual policies
in the mean field regime: while the former prioritizes small
jobs, which are served to completion, and caps large jobs
to a threshold τ∗0 , the latter provides service to larger jobs
and equalizes their reneged work to σ∗0 . We analyze next
how these behaviors are perturbed when the system does
not have access to the true deadlines.

1All the policies considered here are preemptive, otherwise
the model of [1, 12,13] is not applicable.
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Figure 1: Charging profiles under EDF (above) and
LLF (below) in the mean field limit.

3. MODELING DEADLINE UNCERTAINTY
We now extend the previous model to include the possibil-

ity that sojourn times are not exactly known by the sched-
uler. This is the case, for example, when users are asked
to declare their departure time upon arrival, an estimate
subject to uncertainty or misreporting.

We thus introduce a declared sojourn time T ′ available to
the scheduler, perturbation of the real sojourn time T . S is
the requested service time as before. Also let τ ′ denote the
remaining declared sojourn time of a given vehicle. When
working in the mean field limit, again a threshold behavior
emerges but relative to the declared sojourn time. We now
analyze both policies under this assumption.

3.1 EDF under uncertainty
Consider first the EDF algorithm where users are served

in increasing order of τ ′k. The typical trajectory in such a
scenario is depicted in the first diagram of Fig. 2. We have
the follwong:

Proposition 1. Consider an EDF charging system with
priorities based on declared sojourn times T ′, servicing traf-
fic with service-sojourn times (S, T ). For an overload situa-
tion ρ > C and in the mean field regime, the attained service
of a given vehicle is given by

Sa = min{S, (T − T ′ + τ∗)+}, (5)

where the threshold τ∗ satisfies the balance equation:

λE[min{S, (T − T ′ + τ∗)+}] = C. (6)

Proof. In the mean field regime, a threshold τ∗ emerges
and a vehicle arriving at time t becomes prioritized whenever
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Figure 2: Charging profile of EDF (above) and LLF
(below) under deadline uncertainty.

τ ′ < τ∗, i.e. at time t + T ′ − τ∗ since arrival. Its service
ends whenever it reaches full charge or departs at time t+T .
Therefore in this case its service time is min{S, T −T ′+τ∗}.
If T −T ′+ τ∗ < 0 it departs before getting any service, thus
proving (5). Eq. (6) follows from the capacity condition.

Note that eq. (6) always has a unique solution when ρ > C,
since E[min{S, (T − T ′ + τ∗)+}] grows monotonically from
0 to E[S] as τ∗ ↑ ∞.

We wish to understand the effect of the uncertainty on
system performance. Note that in an overload situation,
the mean attained service across EVs is insensitive to un-
certainty: it is fixed by the balance equation (6). Our focus
is on the individual EV performance, as a function of the
misreport in sojourn time, which we denote by U = T ′ − T ,
assumed independent of the service S. The following ex-
pression is an immediate consequence of (5):

E[Sa | U ] = E[min{S, (τ∗ − U)+} | U ], (7)

the expected service attained by vehicles that misreport
their deadline by U .

To make the discussion concrete we calculate the above
expressions for a parametric model to obtain explicit ex-
pressions that are suitable to analysis. In particular, if we
assume that the charging time S ∼ exp(µ) we have a useful
Lemma.

Lemma 1. If S is an exponential random variable with
parameter µ and x > 0 then:

E[min{S, x}] =

∫ x

0

e−µsds =
1

µ
(1− e−µx).

The following proposition follows directly from Lemma 1
and Proposition 1:

Proposition 2. In an EDF system in overload, with S ∼
exp(µ) service times and independent uncertainty U = T ′−
T in declared deadlines, the attained service for a given un-
certainty is:

E[Sa | U ] =
1− e−µ(τ

∗−U)+

µ
, (8)

where τ∗ satisfies the fixed point equation (6).

To proceed further we now assume that U ∼ Uniform[−θ, θ];
here θ acts as an uncertainty parameter.2 LetX = (τ∗ − U) ∼
Uniform[τ∗− θ, τ∗+ θ]. Assuming τ∗ ≥ θ so X ≥ 0 a.s3, we
have:

E[Sa] = E[E[min{S,X} | X]] =
1

µ

(
1− e−µτ

∗ sinh(µθ)

µθ

)
.

With the above formula, we can compute the threshold for
a given λ,C by solving (6) to yield:

τ∗ = − 1

µ
log

(
µθ

sinh(µθ)

(
1− C

ρ

))
. (9)

As θ → 0, the uncertainty disappears, µθ
sinh(µθ)

→ 1 and

we have the expression τ∗0 = − 1
µ

log
(

1− C
ρ

)
for the EDF

threshold studied in [12].
We can further combine (8) with the threshold in (9) to

quantify the uncertainty impact in that case. Specifically,
we compute the relative gain (RGEDF ) in attained service
for a given uncertainty level with respect to S0

a, the attained
service in the perfect information case:

RGEDF (U) =
E[Sa − S0

a | U ]

E[S]
=
E[Sa | U ]− E[S0

a]

E[S]
.

From eq. (2) we know that E[S0
a] = C/λ in the mean field

limit, and E[Sa | U ] follows from eq. (8). For the uniform
uncertainty case, we solve this explicitly to yield:

RGEDF (U) =

(
1− C

ρ

)(
1− µθ

sinh(µθ)
eµU

)
. (10)

As discussed above, the relative gain is decreasing in U ,
penalizing those cars that overreport their sojourn times.

3.2 LLF under uncertainty
As before, an analogous situation occurs when working

with the LLF policy. We denote by L′ = T ′−S the uncertain
initial laxity and by `′ = τ ′ − σ the remaining uncertain
laxity. The analogue of Proposition 1 is:

Proposition 3. Consider an LLF charging system work-
ing under deadline uncertainty. Assume that the system is
in overload, i.e. ρ > C. Then in the mean field regime the
attained service of a given vehicle is given by

Sa = (S + L− L′ − σ∗)+, (11)

where the threshold σ∗ satisfies the balance equation:

λE[(S + L− L′ − σ∗)+}] = C. (12)
2Similar computations can be performed for different distri-
butions. We choose the uniform case for its simplicity.
3The alternate case τ∗ < θ can be handled similarly by a
corrected calculation.



Proof. The main argument is depicted in the lower dia-
gram of Fig. 2. In the mean field limit a fixed threshold `∗

emerges and a vehicle arriving at time t starts service when-
ever `′ = `∗, i.e. at time t+L′− `∗. Under this assumption,
the vehicle would depart at t + T so the total service time
is (t + T ) − (t + L′ − `∗) = S + L − L′ + `∗, provided the
latter quantity is positive. Otherwise it will never be priori-
tized and receives no service upon departure. Identifying as
before σ∗ = −`∗ and combining the above remarks we have
(11), and (12) follows from the capacity condition.

Eq. (12) has a unique solution since E[(S+L−L′−σ∗)+]
decreases monotonically as σ∗ ↑ ∞. Noting also that L′ −
L = T ′ − T = U , we arrive at the expression, analogous to
(7) of the attained service conditioned on the uncertainty
level:

E[Sa | U ] = E[(S − (U + σ∗))+ | U ]. (13)

Computations for the LLF case now proceed for the pre-
viously stated parametric models. For S ∼ exp(µ) service
times, we have similar statements to Lemma 1 and Propo-
sition 2:

Lemma 2. If S is an exponential random variable with
parameter µ and x > 0 then:

E[(S − x)+] =

∫ ∞
x

e−µsds =
e−µx

µ
.

Proposition 4. In an LLF system in overload, with S ∼
exp(µ) service times and independent uncertainty U = T ′−
T in declared deadlines, the attained service for a given un-
certainty is:

E[Sa | U ] =
e−µ(U+σ∗)

µ
, (14)

where σ∗ satisfies the fixed point equation (12).

For the uniform uncertainty case U ∼ Uniform[−θ, θ] we can
compute:

E[Sa] = E[E[Sa | U ]] = E

[
e−µ(U+σ∗)

µ

]
=
e−µσ

∗

µ
E
[
e−µU

]
=

1

µ
e−µσ

∗ sinh(µθ)

µθ
.

With this result we can explicitly solve for the threshold σ∗

by substituting in (12):

σ∗ = − 1

µ
log

(
µθ

sinh(µθ)

C

ρ

)
. (15)

As in the previous case, as θ → 0 we recover the threshold
expression for σ∗0 from [12].

Finally, we can compute the relative gain in attained ser-
vice to quantify the impact of uncertainty for our specific
parametric model. Combining (14) with the threshold in
(15) we obtain:

E[Sa | U ] =
e−µσ

∗

µ
e−µU =

µθ

sinh(µθ)

C

λ
e−µU ,

and from there we compute the relative gain, which again
penalizes the users that overreport their sojourn times:

RGLLF (U) =
E[Sa | U ]− C/λ

1/µ
=
C

ρ

(
µθ

sinh(µθ)
e−µU − 1

)
.

Figure 3: Attained energy difference between the
uncertain and perfect information case. EDF algo-
rithm (above) and LLF algorithm (below).

3.3 Simulation example
In Fig. 3, we show the results of a simulation experiment

performed using the Julia library EVQueues.jl [3], based on
a discrete event simulation of the parking lot. The parame-
ters are λ = 30 EVs/h for the Poisson arrival rate, C = 40,
E[S] = 2h and θ = 1h. The total simulation time is 200h,
with around 6000 vehicles being served. For the same ar-
rival stream and demands, we compute the attained energy
difference when using the uncertain deadline against the per-
fect information case, as a function of the uncertainty level
U = T ′ − T . We do so for both EDF and LLF.

In solid lines, the average gain E[Sa − S0
a | U ] is esti-

mated via the Nadaraya-Watson kernel regression estimator
for the conditional expectation [10] applied to the observed
set of points. This is compared in dashed lines with the cor-
responding theoretical expressions derived from the mean
field limit (8) and (14), showing good fit.

A crucial remark from the previous analysis is that EVs
under-reporting deadlines tend to receive a larger share of
service. This is true regardless of the uncertainty model and
the algorithm in use, because the expressions (7), (13) are
decreasing in U .

4. CURBING INCENTIVES
Given the preceding observation, we wish to provide in-

centive compatibility to declare unbiased deadlines. A sim-
ple algorithm to enforce this is to serve EVs only up to de-
parture or declared departure time, whichever happens first.
We call this the curtailed version of the policy.

We begin by analyzing the curtailed EDF case, where we
have the following:

Proposition 5. Consider an EDF charging system work-
ing under deadline uncertainty and curtailing users when
their declared deadline expires. In the mean field limit with



the system in overload (ρ > C) the attained service of a
given vehicle satisfies:

Sa = min{S, ((T − T ′)1{T<T ′} + τ∗)+}, (16)

where the threshold comes from the fixed point equation:

λE[min{S, ((T − T ′)1{T<T ′} + τ∗)+}] = C. (17)

Proof. The proof is analogous to the proof of Propo-
sition 1, but noting that a vehicle arriving at time t will
receive service up to min{t+ T, t+ T ′}, and its service time
will be either S or:

min{t+ T, t+ T ′} − (t+ T ′ − τ∗) = (T − T ′)1{T<T ′} + τ∗,

provided that the above term is positive. Otherwise it will
not receive service. This proves (16), and (17) follows from
the capacity condition. Note that the indicator term in
(16) only becomes active when an EV over-reports its dead-
line.

We now solve the above equations for the parametric case
of exponential service times and uniform deadline uncer-
tainty. The attained work for τ∗ > θ is given by:

Sa = min{S, τ∗ − U1{U>0}}.

Invoking again Lemma 1 we arrive at:

E[Sa] = E[E[Sa | U ]] =

∫ θ

−θ

1− e−µ(τ
∗−u1{u>0})

µ

1

2θ
du

=
1

µ

[
1− e−µτ

∗
(

1

2
+
eµθ − 1

2µθ

)]
,

and we can solve for the threshold in the same way as before:

τ∗ = − 1

µ
log

[(
1

2
+
eµθ − 1

2µθ

)−1(
1− C

ρ

)]
. (18)

Analogous to Proposition 2, by invoking Lemma 1 we find
an expression for the conditional expectation of attained ser-
vice with respect to the uncertainty

E[Sa | U ] =
1− e−µ(τ

∗−U1{U>0})
+

µ
, (19)

where τ∗ is given by (18).
The expression in (19) is again non-increasing in U , but

it is now constant whenever U < 0, i.e. T ′ < T . This
curbs the incentive to under-report the deadline since no
gain is obtained on average with respect to T ′ = T . For the
parametric model of U under consideration, we obtain from
(18) a formula for the relative gain in service:

RGEDFc(U) =

(
1− C

ρ

)(
1− eµU1{U>0}

1
2

+ eµθ−1
2µθ

)
. (20)

A similar analysis can be performed for the curtailed LLF
policy to yield:

Proposition 6. Consider an LLF charging system work-
ing under deadline uncertainty and curtailing users when
their declared deadline expires. In the mean field limit with
the system in overload (ρ > C) the attained service of a
given vehicle satisfies:

Sa =
(
S − (L− L′)1{L<L′} − σ∗

)+
, (21)

where the threshold comes from the fixed point equation:

λE[
(
S − (L− L′)1{L<L′} − σ∗

)+
] = C. (22)

Figure 4: Attained energy difference between the
uncertain and perfect information case when cur-
tailing is applied. EDF (above) and LLF (below).

Proof. A vehicle arriving at time t will become priori-
tized at time t + L′ − `∗ and receive service up to min{t +
T, t+ T ′} due to the curtailing. Therefore, its service is:

min{t+ T, t+ T ′} − (t+ L′ − `∗) =

S + min{L,L′} − L′ + `∗ = S + (L− L′)1{L<L′} + `∗,

provided the above term is positive. Otherwise, its laxity
will never become low enough to get priority in the first
place. Identifying again σ∗ = −`∗ we get (21) and the
proposition follows.

Working again in the parametric case, taking L′ −L = U
then eq. (21) becomes:

Sa =
(
S − U1{U>0} − σ∗

)+
.

Applying now Lemma 2 we can compute:

E[Sa] = E[E[Sa | U ]] =

∫ θ

−θ

e−µ(u1{u>0}+σ
∗)

µ

1

2θ
du

= e−µσ
∗
(

1

2
+

1− e−µθ

2µθ

)
,

and we can solve for the threshold in the same way as before:

σ∗ = − 1

µ
log

[(
1

2
+

1− e−µθ

2µθ

)−1
C

ρ

]
. (23)

We also have the analogous result to Proposition 4 for the
conditional attained work under LLF:

E[Sa | U ] =
e−µ(U1{U>0}+σ

∗)

µ
, (24)

where σ∗ is given by (23). Again, the above expression is
non-increasing in U and constant for U < 0, meaning there
is no gain on average by under-reporting the deadline.



Figure 5: Attained energy difference in a real-world
trace under curtailed EDF (above) and LLF (below).

Combining all of the above, we obtain an explicit expres-
sion for the relative gain in attained service for the curtailed
LLF policy:

RGLLFc(U) =
C

ρ

[(
1

2
+

1− e−µθ

2µθ

)−1

e−µU1{U>0} − 1

]
.

(25)
In Fig. 4, we show the results of the simulation experiment

as before but applying the new curtailed policies. We can
see that the average gain is curbed whenever U < 0, and
coincides with the expressions (20), (25) based on mean field.

5. SIMULATIONS WITH REAL TRACES
Finally, we simulate our algorithms using real world traces

from a parking lot at a Silicon Valley firm, kindly provided
by the authors of [5]. For this purpose, we build a set with
arrival times, departures, demands and power requested by
EVs in a multi-day period with time-varying demand. The
charging capacity is set at C = 30 charging stations in order
to analyze the system in an overload situation. The average
sojourn time in our set is 2.25 hours, and the average charg-
ing time is 1.77 hours. We introduce an uniform uncertainty
in deadline reporting with θ = 0.5 hours. For the particular
dataset analyzed, the parking lot is overloaded 73% of the
total simulation time.

Fig. 5 shows the results for both the EDF and LLF
curtailed policies applied to this scenario, as well as the
Nadaraya-Watson estimator for the conditional expectation.
We observe similar patterns as the theoretic results, most
importantly, the effect of enforcing an incentive compatible
policy with the curtailment.

6. CONCLUSIONS
We analyzed the performance in overload of the EDF and

LLF policies for scheduling EV charging at a parking lot,

when departure times are not known exactly. In a suit-
able mean-field model [13] these policies are characterized
by a service threshold; we extended the analysis to include
deadline uncertainty. A relevant performance metric is the
relative gain in service conditioned on the deadline reporting
error; explicit formulas were obtained for a parametric case.
We further proposed and analyzed a modification of both
policies to curb incentives to under-report the deadline, and
validated its performance with real world traces. In future
work we plan to address the problem where users’ decisions
to join the system and their sojourn times may depend on
the current congestion state.
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