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Presentation of the problem

o Characteristics of the processor:

o DVFS processor (Dynamic Voltage and Frequency Scaling) working at
variable speed s.
o Power dissipation of the processor w(s).

@ Characteristics of the jobs:

e Jobs arrive randomly, with random sizes and deadlines.
o Jobs that are not completed before the deadline are dropped from the
queue, and induce a cost Kpss.

@ Objective: Find the optimal speeds that minimize the long term
energy spent by the processor and the cost of missed deadlines.
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System description

Processor: A DVFS processor with speed s € [0, Spax], and the power
dissipation w is an increasing, strictly convex function (classic model:

w(s) = s3).
Jobs: Poisson arrival process with rate A
Deadlines: exponential law with parameter §

Sizes: exponential law with parameter p.

= We can formulate the problem as an MDP.
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Rates of the MDP

We consider the continuous-time MDP: (N, [0, Smax], Q, ).
Let 0 = (07)ien be a stationary speed policy:
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Figure: Markov chain X under policy o.
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Cost function

Define c(-,-) as the expected cost endured by the system at time t:
c(i,o) := Knissid + w(oj).

For any policy o, X7 is ergodic.
= The long term cost J(o) exists and the optimal cost satisfies the
Bellman optimality equation.
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Main result

There exists a deterministic optimal policy o* = (o})ien that is increasing
in i and upper bounded by B, where:

= arg min (w(s) — KmisstS)-
seR+

For example: with w(s) = s3 (i.e., the classic model), B = %
Three key steps in the proof:

@ Truncate the MDP

@ Prove the result in the truncated case

@ Take the limit in the optimality equation
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First step: Truncation of the MDP

The former MDP cannot be uniformized. A solution is to truncate it.
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Decaying vs no decay: figures
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(a) Mn with decaying arrival rates (b) My without decay of the arrival rates

Figure: Optimal policies o* and ¢* for My and M.
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Second step: Lemma for the truncated case

Let

K.
BN :=arg min | w(s) — L'I:S .
seR*t 1'+'3N

Then,

Lemma

The optimal speed policy o™ is:

(i) unique.

(i) increasing in i: Vi < N,o} < o ;.
(iii) upper-bounded: Vi < N,c; < BN.
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Third step: Taking the limit
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Figure: Two optimal speed policies in My, for N = 60 and N = 1000 and the
bound B = \/%.
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Approximating the average cost

Let o8 be the policy such that: o*,B = Blyjsqy, and p=1.
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Figure: Levels sets of the percentage relative error £ with a fixed cost per
deadline, Kpiss = 300.
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Deadline miss probability

Komiss is hard to estimate. We instead look at the probability for jobs to
miss their deadline in the stationary regime.

Definition
The probability that a job misses its deadline under the stationary regime
of o8 is:

B .

s Oi
Pmiss ‘= E —IB-—‘
= 1-750i+B
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Approximation when pp,;ss is fixed

Figure: Levels sets of the percentage relative error £ with a fixed miss probability
Pmiss = 0.1.
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Conclusion

@ The result holds even if the power dissipation function w is non
strictly convex (example: piecewise linear, when the processor works
with a finite set of speeds).

@ The smooth scaling method is powerful for the analysis of structural
properties.

@ Future research: reinforcement learning with unknown rates of the
MDP.
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