Optimal Speed Profile of a DVFS Processor under Soft Deadlines

Louis-Sébastien Rebuffi

Jonatha Anselmi, Bruno Gaujal

November 12, 2021

- Characteristics of the processor:
 - DVFS processor (Dynamic Voltage and Frequency Scaling) working at variable speed *s*.
 - Power dissipation of the processor w(s).
- Characteristics of the jobs:
 - Jobs arrive randomly, with random sizes and deadlines.
 - Jobs that are not completed before the deadline are dropped from the queue, and induce a cost ${\cal K}_{miss}.$
- Objective: Find the optimal speeds that minimize the long term energy spent by the processor and the cost of missed deadlines.

Processor: A DVFS processor with speed $s \in [0, S_{max}]$, and the power dissipation w is an increasing, strictly convex function (classic model: $w(s) = s^3$).

Jobs: Poisson arrival process with rate λ Deadlines: exponential law with parameter δ Sizes: exponential law with parameter μ .

 \Rightarrow We can formulate the problem as an MDP.

We consider the continuous-time MDP: $(\mathbb{N}, [0, S_{max}], Q, c)$. Let $\sigma = (\sigma_i)_{i \in \mathbb{N}}$ be a stationary speed policy:

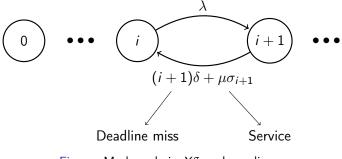


Figure: Markov chain X^{σ} under policy σ .

Define $c(\cdot, \cdot)$ as the expected cost endured by the system at time *t*:

$$c(i,\sigma) := K_{miss}i\delta + w(\sigma_i).$$

For any policy σ , X^{σ} is ergodic.

 \Rightarrow The long term cost $J(\sigma)$ exists and the optimal cost satisfies the Bellman optimality equation.

Theorem

There exists a deterministic optimal policy $\sigma^* = (\sigma_i^*)_{i \in \mathbb{N}}$ that is increasing in *i* and upper bounded by *B*, where:

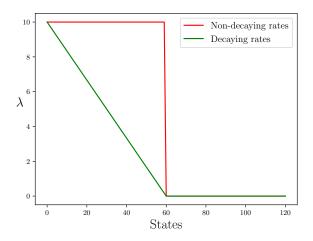
$$B := \arg\min_{s \in \mathbb{R}^+} (w(s) - K_{miss} \mu s).$$

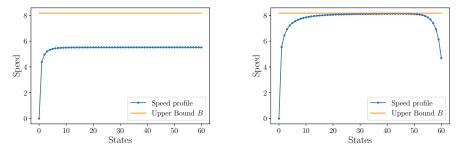
For example: with $w(s) = s^3$ (i.e., the classic model), $B = \sqrt{\frac{\mu K_{miss}}{3}}$. Three key steps in the proof:

- Truncate the MDP
- Prove the result in the truncated case
- Take the limit in the optimality equation

First step: Truncation of the MDP

The former MDP cannot be uniformized. A solution is to truncate it.





(a) \mathcal{M}_N with decaying arrival rates

Figure: Optimal policies σ^* and $\sigma^{*'}$ for \mathcal{M}_N and \mathcal{M}'_N .

Second step: Lemma for the truncated case

Let

$$B^{oldsymbol{N}} := rg\min_{oldsymbol{s} \in \mathbb{R}^+} \left(w(oldsymbol{s}) - rac{oldsymbol{\mathcal{K}}_{miss} \mu oldsymbol{s}}{1 + rac{\lambda}{\delta N}}
ight).$$

Then,

Lemma

The optimal speed policy σ^* is:

(i) unique.

(ii) increasing in i:
$$\forall i \leq N, \sigma_i^* < \sigma_{i+1}^*$$
.

(iii) upper-bounded:
$$\forall i \leq N, \sigma_i^* \leq B^N$$
.

Third step: Taking the limit

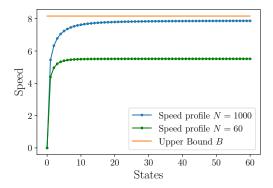


Figure: Two optimal speed policies in M_N , for N = 60 and N = 1000 and the bound $B = \sqrt{\frac{\mu K_{miss}}{3}}$.

Approximating the average cost

Let σ^B be the policy such that: $\sigma^B_i = B \mathbb{I}_{\{i>0\}}$, and $\mu = 1$.

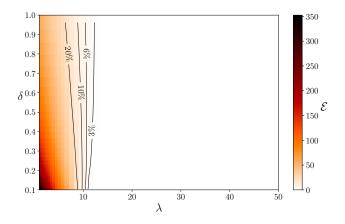


Figure: Levels sets of the percentage relative error \mathcal{E} with a fixed cost per deadline, $K_{miss} = 300$.

 K_{miss} is hard to estimate. We instead look at the probability for jobs to miss their deadline in the stationary regime.

Definition

The probability that a job misses its deadline under the stationary regime of σ^B is:

$$p_{miss} := \sum_{i \ge 1} \frac{\pi_i^B}{1 - \pi_0^B} \frac{\delta i}{\delta i + B}.$$

Approximation when p_{miss} is fixed

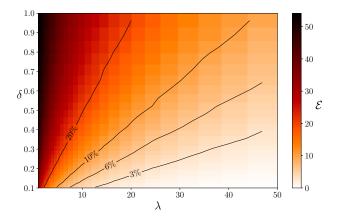


Figure: Levels sets of the percentage relative error \mathcal{E} with a fixed miss probability $p_{miss} = 0.1$.

- The result holds even if the power dissipation function *w* is non strictly convex (example: piecewise linear, when the processor works with a finite set of speeds).
- The smooth scaling method is powerful for the analysis of structural properties.
- Future research: reinforcement learning with unknown rates of the MDP.