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Presentation of the problem

Characteristics of the processor:
DVFS processor (Dynamic Voltage and Frequency Scaling) working at
variable speed s.
Power dissipation of the processor w(s).

Characteristics of the jobs:
Jobs arrive randomly, with random sizes and deadlines.
Jobs that are not completed before the deadline are dropped from the
queue, and induce a cost Kmiss .

Objective: Find the optimal speeds that minimize the long term
energy spent by the processor and the cost of missed deadlines.
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System description

Processor: A DVFS processor with speed s ∈ [0, Smax ], and the power
dissipation w is an increasing, strictly convex function (classic model:
w(s) = s3).

Jobs: Poisson arrival process with rate λ
Deadlines: exponential law with parameter δ
Sizes: exponential law with parameter µ.

⇒ We can formulate the problem as an MDP.
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Rates of the MDP

We consider the continuous-time MDP: (N, [0,Smax ],Q, c).
Let σ = (σi )i∈N be a stationary speed policy:

0 • • • i i + 1

(i + 1)δ + µσi+1

λ

• • •

Deadline miss Service

Figure: Markov chain Xσ under policy σ.
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Cost function

Define c(·, ·) as the expected cost endured by the system at time t:

c(i , σ) := Kmiss iδ + w(σi ).

For any policy σ, X σ is ergodic.
⇒ The long term cost J(σ) exists and the optimal cost satisfies the
Bellman optimality equation.
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Main result

Theorem

There exists a deterministic optimal policy σ∗ = (σ∗i )i∈N that is increasing
in i and upper bounded by B , where:

B := arg min
s∈R+

(w(s)− Kmissµs).

For example: with w(s) = s3 (i.e., the classic model), B =
√

µKmiss
3 .

Three key steps in the proof:
Truncate the MDP
Prove the result in the truncated case
Take the limit in the optimality equation
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First step: Truncation of the MDP

The former MDP cannot be uniformized. A solution is to truncate it.
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Decaying vs no decay: figures
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(a) MN with decaying arrival rates (b) M′
N without decay of the arrival rates

Figure: Optimal policies σ∗ and σ∗
′
forMN andM′N .
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Second step: Lemma for the truncated case

Let

BN := arg min
s∈R+

(
w(s)− Kmissµs

1+ λ
δN

)
.

Then,

Lemma

The optimal speed policy σ∗ is:
(i) unique.
(ii) increasing in i : ∀i ≤ N, σ∗i < σ∗i+1.

(iii) upper-bounded: ∀i ≤ N, σ∗i ≤ BN .
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Third step: Taking the limit
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Figure: Two optimal speed policies inMN , for N = 60 and N = 1000 and the

bound B =
√
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3 .
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Approximating the average cost

Let σB be the policy such that: σBi = B I{i>0}, and µ = 1.
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Figure: Levels sets of the percentage relative error E with a fixed cost per
deadline, Kmiss = 300.
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Deadline miss probability

Kmiss is hard to estimate. We instead look at the probability for jobs to
miss their deadline in the stationary regime.

Definition
The probability that a job misses its deadline under the stationary regime
of σB is:

pmiss :=
∑
i≥1

πBi
1− πB0

δi

δi + B
.
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Approximation when pmiss is fixed
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Figure: Levels sets of the percentage relative error E with a fixed miss probability
pmiss = 0.1.
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Conclusion

The result holds even if the power dissipation function w is non
strictly convex (example: piecewise linear, when the processor works
with a finite set of speeds).

The smooth scaling method is powerful for the analysis of structural
properties.

Future research: reinforcement learning with unknown rates of the
MDP.
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