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Motivation

Limited resources

Spectral division

Might be beneficial to collaborate

Canada’s wireless spectrum auction in 2008
Analysts predicted $2 billion
But because of competition - $4.25 billion

Selfish players

Possible presence of an adamant player
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Spectrum Share Example

Player i bid xi = λiai

Spectrum share = λiai∑n
j=0 λjaj

Cost for player i, γi = γ
λi
xi

The utility of any player i equals

ϕi =
λiai∑n
j=0 λjaj

− γai

People may want to bid together

Spectrum has to be divided

Is cooperation beneficial? If yes, then
when?

Which type of players will form
coalitions?

Figure: Source: The Economic Times
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Problem Description

A resource sharing game (RSG) with n+ 1 players, N = {0, 1, · · · , n}
The utility of any player i equals

ϕi =
λiai∑n
j=0 λjaj

− γai ∀ i ∈ N

where γ = cost factor, λi = influence factor and ai = action of ith player

Players interested in ‘selfish’ cooperative opportunities

Adamant player is not interested in cooperation
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Problem Description Contd.

A Partition, P is a set of coalitions such that

∪ki=0 Si = N and Si ∩ Sj = ∅, null set, ∀ i 6= j

Players in coalition Si choose their strategies together

Utility of a coalition = sum of utilities of its players:

ϕSm(am,a−m) =

∑
l∈Sm

λlal

λ0a0 +
∑n

l=1 λlal
− γ

∑
l∈Sm

al; m ≥ 1

where, am = {ai, i ∈ Sm},a−m = {ai, i /∈ Sm}

AIM: to study ‘partition of coalitions’ that is ‘stable’
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Coalition Formation Game Ingredients

Set of players

Players interested in forming coalitions, NC = {1, · · · , n}.

Strategy1

A strategy of a player = coalition formation interests, xi ⊆ NC

The strategy set of a player i, denoted by Xi is defined as:

Xi = {xi : i ∈ xi and xi ⊆ NC}

i ∈ xi in all strategies

Utility of each player for any strategy profile x = {xi}i ?

1S. Nevrekar. A theory of coalition formation in constant sum games, 2015.
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Ingredients: Possible partitions, given interests/strategy profile

Partition formed under strategy profile x

Coalition S ∈ P(x), if it satisfies:

i ∈ xj and j ∈ xi for all i, j ∈ S;

i and j are in same coalition only if there is a mutual interest!

There exists no other partition P ′

Si and Sj ∈ P such that Si ∪ Sj ⊆ S′ ∈ P ′

preference is given to coarser partitions!

A strategy profile −→ multiple partitions

For example, x1 = {1, 2}, x2 = {1, 2, 3} and x3 = {1, 2, 3}

P1 = {{1, 2}, {3}} and P2 = {{1}, {2, 3}}
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Ingredients: Resource sharing game among coalitions in P

Resource Sharing Game (RSG)

Coalitions are players, utility = sum utility

λ̄Pi - highest influence factor among players in coalition Si

Theorem: Utilities of coalitions at RSG-Nash Equilibrium 2

Possibility of many NE, but unique NE-utilities

Only top coalitions (larger λ̄Pi ) derive non-zero utility (J ∗)
Unique NE-utility of coalition

ϕ∗Sm
(P) =

(
sP − MP−1

λ̄Pm

sP

)2

1Sm∈J ∗ ,M
P := max

{
m ≤ k :

m∑
i=1

1

λ̄Pi
− m− 1

λ̄Pm
> 0

}
, sP =

MP∑
m=1

1

λ̄Pm

1R. Dhounchak, V. Kavitha, and Y. Hayel. To participate or not in a coalition in adversarial games. In
NetGCooP.
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Ingredients: Division of coalitional worth among its members

Division of worth in any P = {S1, S2, · · · , Sk}: Extension of Shapley value3

For division within a coalition (Si)- Si is considered as grand coalition.

Usual Shapley value definition is used

φ∗j (P) =
∑

C⊆Si,j /∈C

|C|!(|Si| − |C| − 1)!

|Si|!

[
νPC∪{j} − ν

P
C

]
and j ∈ Si

νPC = worth of sub-coalition C = pessimal utility at RSG-NE

Environment (S1, · · · , Si−1, Si+1, Sk) is assumed to be fixed.
Other members, Si − C choose to hurt C the most [3, 2]

Symmetric players =⇒ equal shares

1R. J. Aumann and J. H. Dreze. Cooperative games with coalition structures. International Journal of
game theory, 3(4):217–237, 1974.
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Ingredients: Player utilities for given strategy profile

Lemma

Pessimal utility of sub-coalition, C (νPC ) = obtained when players in Si − C are
arranged as singletons in RSG.

Utility of a player = worst utility under all possible partitions {P(x)}

Ui(x) = min
P(x)

φ∗i (P(x))

Thus we have a strategic form game !

AIM: to study the Nash Equilibrium (NE) and the partitions emerging at NE
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Solution Concepts

NE-partitions = Partitions at Nash Equilibrium

Nash Equilibrium x∗: strategy profile where no player can deviate unilaterally and
obtain higher utility.

NE-partitions = {P(x∗)}

xPj = Si for any j ∈ Si ∈ P = natural strategy profile that uniquely leads to P.

U-stable partitions

A partition P is said to be a U-stable partition if the corresponding natural strategy profile
xP is a Nash Equilibrium.

All U-stable partitions are NE-partitions but the vice-versa may not be true!

Social Optima (SO)-partitions

Maximises the sum utility of all players in NC .
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Results: Symmetric Players for λi = λ

η = λ0/λ = relative strength of adamant player

SO-Partitions

η

0 0.414 0.707Grand Coalition Grand CoalitionDuopoly

Under Grand coalition, adamant player always derives positive utility

Else, it derives zero utility when η ≤ (n− 1)/n.

Theorem (Unique NE for symmetric players: when n > 4)

All players alone (ALC) is the unique NE-partition.

For n ≤ 4, results in paper.
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Results with symmetric players

Price of Anarchy: Estimate loss of players due to their ‘selfishness’

Ratio of sum utilities at ‘social optima’ and sum utilities at ‘worst Nash Equilibrium’.

NE-Partition= ALC, SO-Partitions and PoA for n > 4

0.414 0.707

Duopolyη

n−1
n

0

GC GC

0.5

Duopoly GC

SO-
Partitions

PoA 1
n

[
1+nη
1+η

]2n
(1+η)2

n
(1+η)2

n
2

2n
(1+2η)2

PoA increases as O(n) when n→∞.

As η → 0 or ∞, PoA ↑ n.
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Single Asymmetric Player

One asymmetric player with influence factor βλ (with β > 1)

n symmetric players with influence factor λ

Theorem (Under certain assumptions)

For n > 5 and β > 1, the only U-stable partitions are of the form

Coalition with asymmetric player can contain more players

Others are all alone

One asymmetric player =⇒ More stable partitions!
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Absolute Stability

Assuming λ1 ≥ λ2 ≥ · · · ≥ λn.

Definition: Absolute Stability

All partitions are U-stable.

Definition: Measure of asymmetry

AI := min
2≤j≤n

%2j+1 − %2j
cj(1− %j)2

, where %j = λ1/(λ1 + λj) and cj := 1j=2 + j1j>2

Theorem (When player 1 is significantly influential than others)

The system is absolutely stable if and only if AI ≥ 1.
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Moderate Asymmetry

λ1 ≥ · · · ≥ λj−1 ≥ λj ≥ · · · ≥ λk ≥ λk+1 ≥ · · · ≥ λn
SS({j, k}) partition =⇒ players other than j and k are alone.

Theorem (Bigger players, higher chance to form coalitions)

Under certain conditions, partition SS({j − 1, k}) is stable for any j < k, if partition
SS({j, k}) is stable.

Theorem (Smaller players, higher chance to form coalitions)

The partition SS({j, k + 1}) is stable for any j < k, if partition SS({j, k}) is stable.
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Numerical Results

Figure: λj = 20− αjδ, αj ∼ U(0, 1) and δ ∈ [1, 20]

Number of U-stable
partitions increases as
measure of asymmetry
increases.
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Numerical Results Contd.

δ
No. of Stable partitions

Additional Stable Partitions
ALC TTC SS

0.1 1 0 0 {{1}, {2}, {3}, {4}, {5}}
0.146 1 0 1 {{5, 1}, {4}, {3}, {2}}
0.147 1 2 1 {{5, 3}, {4, 1}, {2}}

{{5, 2}, {4, 1}, {3}}
0.18 1 2 2 {{5, 2}, {4}, {3}, {1}}
0.19 1 2 3 {{5, 3}, {4}, {2}, {1}}

Table: λj = 20− αjδ, α = [0, 8, 11.5, 15.3, 21.5]

With almost equal players - only ALC

Highest and lowest players are the first ones to collaborate

If SS({j, k}) is stable, then SS({j − 1, k}), SS({j, k + 1}) and SS({j − 1, k + 1}) are
also stable
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Spectral Share Example

Stable Configurations Partition

1 {30, 30, 35, 35}
2 {{30, 35}, {30, 35}}
3 {{30, 30}, {35, 35}}
4 {{30, 35}, {30}, {35}}
5 {{30}, {30}, {35}, {35}}

Table: Partitions described by stable configurations

Figure: λj = [35, 35, 30, 30] and γ = 1

Highest spectral share - at config. 2

Highest utility - at config. 1

Asymmetric players together in config. 2 - performs better than config. 3
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Conclusions

With equal or almost equal players, no one collaborates at equilibrium if n > 4.

High price of anarchy.

Identified conditions for absolute stability, for the case of asymmetric players.

Absolute stability = all partitions stable

Stable partitions (against unilateral deviations) increase as asymmetry increases.

The highest and the lowest capacity players are the first ones to collaborate.

Coalitional Stability

GC - under absolute stability conditions

No partition - symmetric players
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Thank you
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