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Motivation: Backbone of the Internet
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Figure: OVH Europe network
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Figure: OVH Europe network
Features:

» Traffic: Highly aggregated
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Motivation: Backbone of the Internet

Figure: OVH Europe network

Features:
» Traffic: Highly aggregated

» Routing: Mostly static
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Stylized model: Static load balancing

no— Tt @

M) —— :
: L0 — T8 @)

Am()— :

o) —_ @ ] )

Martin Zubeldia Learning traffic correlations in multi-class queueing systems by sampling workloads



Stylized model: Static load balancing
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Assumptions:

» Arrivals: A(-) is Gaussian with known rate A € R and
unknown covariance matrix ¥ : R2 — R™xm
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Assumptions:

» Arrivals: A(-) is Gaussian with known rate A € R and
unknown covariance matrix ¥ : R2 — R™xm

» Routing: Static deterministic split with routing matrix R
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Stylized model: Static load balancing
ne)— Q1@
A0 —— :

: L) — Qi | ()
A ;
56— | Qk | (E®)

Assumptions:

» Arrivals: A(-) is Gaussian with known rate A € R and
unknown covariance matrix ¥ : R2 — R™xm

» Routing: Static deterministic split with routing matrix R

Objective: Learn

R* € argmin{ max {P(Qi<R) > bZ)}}

1e{1,....k}
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Additional assumptions on A(-)

Assumption: Many-sources regime

where {X)(-)} _ arei.i.d.
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Additional assumptions on A(-)

Assumption: Many-sources regime
ACy=am =L SO X0,
where {X)(-)} _ arei.i.d.

For simplicity: multivariate fractional Brownian motions (mfBm)
(n) (n) _ 9i04Pij (1, 12H 2H (. 12H
Cov (AZ. (t), Al (s)) = 2t (|t| +|sPH s — ¢ )
» Hurst parameter: H € (0,1)
» Variance: o2 > 0
» Correlation: p; ; € [—1, 1]
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How do we find the optimal
routing matrix?



Optimization with indirect learning

Algorithm:
» Start with initial routing matrix Ry
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Optimization with indirect learning

Algorithm:
» Start with initial routing matrix Ry
> Observe queues and estimate steady-state Q™ (Ry)
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Optimization with indirect learning

Algorithm:
» Start with initial routing matrix Ry
> Observe queues and estimate steady-state Q™ (Ry)
» Key: Use an inversion procedure to get covariance matrix
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Optimization with indirect learning

Algorithm:
» Start with initial routing matrix Ry
> Observe queues and estimate steady-state Q™ (Ry)
» Key: Use an inversion procedure to get covariance matrix
> Use large-deviations approximation to get
P (Q(”)(R) > bi> forany R
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Optimization with indirect learning

Algorithm:
» Start with initial routing matrix Ry
> Observe queues and estimate steady-state Q™ (Ry)
» Key: Use an inversion procedure to get covariance matrix
> Use large-deviations approximation to get
P (QE”)(R) > bi> forany R

» Solve optimization problem for R*
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Optimization with indirect learning

Algorithm:
» Start with initial routing matrix Ry
> Observe queues and estimate steady-state Q™ (Ry)
» Key: Use an inversion procedure to get covariance matrix
> Use large-deviations approximation to get
P (QE”)(R) > bi> forany R

» Solve optimization problem for R*
Advantages:

» Queue lengths are easier to estimate than covariances
» Fast convergence
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First inversion procedure



From marginal queue lengths to variances
[Mandjes & van de Meent (2009) Resource dimensioning through buffer sampling]
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From marginal queue lengths to variances
[Mandjes & van de Meent (2009) Resource dimensioning through buffer sampling]

Work flow:
A(n)() Routing Iz(n)() Queueing Q(n)

i
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From marginal queue lengths to variances
[Mandjes & van de Meent (2009) Resource dimensioning through buffer sampling]

Work flow:
A(n)() Routing Iz(n)() Queueing Q(n)

i

Inversion: . .
an) Inversion Var <Il(n)()>
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From marginal queue lengths to variances
[Mandjes & van de Meent (2009) Resource dimensioning through buffer sampling]

Work flow:
A(n)() Routing Iz(n)() Queueing Q(n)

i

Inversion:

(2

Q(n) ~Inversion”, v ap (IZ.(”’)(-))

based on the large-deviations principle

| § . b— (i — \) ’
Jim_ —% tog (P (Q1") > b)) = inf { inv; (1 (tt)]) }
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From marginal queue lengths to variances

Variance estimator:

A A [b— (pi — Xi)t]2 2 .
0L { ST CRED) } e )
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From marginal queue lengths to variances

Variance estimator:

N (8 (RS9t R
0t e

Theorem
Fix ¢ < 0. We have

lim lim n VZ(?N) (t) — Var (IZ.(") (t))’ =0, a.s.,

n—o00 N—o00

for all e small enough.
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From marginal queue lengths to variances

> Need to find the m(m + 1) /2 distinct Cov (A<">(-), A§">(-))

7
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From marginal queue lengths to variances

> Need to find the m(m + 1) /2 distinct Cov (A<">(-), A§">(-))

7

» For each of the & queues we obtain a linear equation

m

TV & Var (100)) = 323 RyRyuCon (A (), 400)

j=1q=1
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From marginal queue lengths to variances

> Need to find the m(m + 1) /2 distinct Cov (A<">(-), A§">(-))

7

» For each of the & queues we obtain a linear equation

m

TV & Var (100)) = 323 RyRyuCon (A (), 400)

j=1 g=1

> Repeating this for different R yields enough l.i. equations
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From marginal queue lengths to variances

> Need to find the m(m + 1) /2 distinct Cov (A<">(-), A§">(-))

7

» For each of the & queues we obtain a linear equation

m

VN var (170)) = Y3 RuaBaaCov (A7), AP())

j=1q=1

> Repeating this for different R yields enough l.i. equations

Use joint queue lengths to get more equations directly?
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Second inversion
procedure



From pair-wise joint queue lengths to covariances

Work flow:

A () Jovting, <I¢(n)(')’ [](n)(.)) Queueing (an)7 an))
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From pair-wise joint queue lengths to covariances

Work flow:
n Routin, n n Queuein, n n
Al () 2 (1), 1)) S (), Q)
Inversion:

(@, @) ety cou (1 (), 1))
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From pair-wise joint queue lengths to covariances

Work flow:
A (. foting, <I¢(n)(')’ I](.”)(-)) Queucing, (Ql(n), an))
Inversion:
(@1, @) = Cou (170), 1)
based on the large-deviations principle
lim - log (P (@™ +e0" > 1))

n—oo n
_ _ 2
[1 = ci (i = Xi) t = ¢ (uj = Ay) S}

t,s<0 2Var (cz-Ii(n) (t) + chJ(-n)(s))
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Feasibility of the inversion
Covariance estimator:

CA’.(n’N)(t, s) A inf ] { ............ } ; Cov (IZ.(n)(t), I](n)(s))

b€ ci,ci€le,1/e
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Feasibility of the inversion

Covariance estimator:

~(n,N) A . ? (n) (n)

n t 4 | D S ~ I t). I}

Cz,],e ( 78) Ci,leen[E,l/E}{ } Cov ( v ( )7 J (8))
lheorem

If 1()(-) is short-range dependent (H < 1/2), and I\"™)(-) and

I](.”>(-) are non-negatively correlated (p; ; > 0), then

lim lim n C'("’N)(t,t) — Cov <Ii(n)(t), I](-n)(t))‘ =0, a.s.,

n—00 N—o00 U

for all e small enough.
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Feasibility of the inversion

> Need to find the m(m + 1) /2 distinct Cov (A§">(-), A§“>(-))
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Feasibility of the inversion

> Need to find the m(m + 1) /2 distinct Cov (A§">(-), AW(-))

» For each of the k queues we obtain a linear equation

m

‘};E??N)() ~ Z ZRj7qu’iCOU <A§n)(), A((]n)())

j=1¢g=1
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Feasibility of the inversion

> Need to find the m(m + 1) /2 distinct Cov (A§">(-), AW(-))

» For each of the k queues we obtain a linear equation

‘};E?’N)() ~ Z ZRj7qu’iCOU <A§n)(), A((]n)())

j=1q=1

» For each of the k(k — 1)/2 pairs (3, j), with i < j, we get

’j’ ,~ ;:5 ZZR(; leJCOU ( (n)(.)7 Agn)()>

q=11=1
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Feasibility of the inversion

> Need to find the m(m + 1)/2 distinct Cou (A§">(-), AW(-))

» For each of the k queues we obtain a linear equation

m

‘};E??N)() ~ Z ZRj:qu7iCOU <A§n)(), A((]n)())

j=1¢q=1

» For each of the k(k — 1)/2 pairs (3, j), with i < j, we get

’j’ ,~ ;:5 ZZR(] leJCOU ( (n)(.)7 Aén)()>
qg=11=1

» If m <k, these are enough for a single R
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Fundamental limitation

Theorem

If 1()(-) is long-range dependent (H > 1/2), and I\")(-) and
I](")(‘) are negatively correlated (p; ; < 0), then

Cov (Ii(”) (t), I ](.”) (t)) cannot be recovered from the large

deviations behavior of c,QE") + chg.").

There is an inherent loss of information!
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Why do we have this
limitation?



Intuition with queues as reflected processes

Note: Q™ (-) and Qg.")(-) are the reflection at 0 of

W@ 21w — et and W) 2 1) — pjt

? J
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Intuition with queues as reflected processes
Note: Q™ (-) and Qg.")(-) are the reflection at 0 of

W@ 21w — et and W) 2 1) — pjt

? J

In this case: Because of negative correlation:

» When Ii(”)(-) grows faster, IJ(”)(-) grows slower
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Intuition with queues as reflected processes
Note: Q™ (-) and Qg.")(-) are the reflection at 0 of

W@ 21w — et and W) 2 1) — pjt

? J

In this case: Because of negative correlation:

» When Ii(")(-) grows faster, IJ(”)(-) grows slower

> QE”)(.) increases and Qﬁ")(-) decreases (until it’s reflected)
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Intuition with queues as reflected processes

Note: Q™ (-) and QE.")(-) are the reflection at 0 of

W@ 21w — et and W) 2 1) — pjt

? J

In this case: Because of negative correlation:

» When Ii(")(-) grows faster, IJ(.”)(-) grows slower

> QE”)(.) increases and Qﬁ")(-) decreases (until it’s reflected)

» Magnitude of correlation is lost in the reflection at 0
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Conclusions

> |nputs’ variances can be recovered from queue lengths
= Arrivals’ covariances can be recovered with a few
iterations

Martin Zubeldia Learning traffic correlations in multi-class queueing systems by sampling workloads



Conclusions

> |nputs’ variances can be recovered from queue lengths
= Arrivals’ covariances can be recovered with a few
iterations

» Short-range dependent inputs + non-negative correlations
= Arrivals’ covariances can be recovered with one iteration
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Conclusions

> |nputs’ variances can be recovered from queue lengths
= Arrivals’ covariances can be recovered with a few
iterations

» Short-range dependent inputs + non-negative correlations
= Arrivals’ covariances can be recovered with one iteration

» Long-range dependent inputs + negative correlations
= Inputs’ covariances cannot be recovered
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Conclusions

> |nputs’ variances can be recovered from queue lengths
= Arrivals’ covariances can be recovered with a few
iterations

» Short-range dependent inputs + non-negative correlations
= Arrivals’ covariances can be recovered with one iteration

» Long-range dependent inputs + negative correlations
= Inputs’ covariances cannot be recovered

» Can be extended to multi-path routing in acyclic networks
(needs much more involved large-deviations results)
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Thank you!



