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Motivation: Backbone of the Internet

Figure: OVH Europe network

Features:
▶ Traffic: Highly aggregated

▶ Routing: Mostly static
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Stylized model: Static load balancing

A1(·) Router

...
Am(·) Router

I1(·)

Ij(·)

Ik(·)

µ1Q1

...
µjQj

...
µkQk

Assumptions:
▶ Arrivals: A(·) is Gaussian with known rate λ ∈ Rm

+ and
unknown covariance matrix Σ : R2 → Rm×m

▶ Routing: Static deterministic split with routing matrix R

Objective: Learn

R∗ ∈ argmin

{
max

i∈{1,...,k}

{
P
(
Qi(R) > bi

)}}
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Additional assumptions on A(·)

Assumption: Many-sources regime

A(·) = A(n) =
1

n

n∑
i=1

X(i)(·),

where
{
X(i)(·)

}
i≥1

are i.i.d.

For simplicity: multivariate fractional Brownian motions (mfBm)

Cov
(
A

(n)
i (t), A

(n)
j (s)

)
=

σiσjρi,j
2n

(
|t|2H + |s|2H − |s− t|2H

)
▶ Hurst parameter: H ∈ (0, 1)

▶ Variance: σ2
i > 0

▶ Correlation: ρi,j ∈ [−1, 1]
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How do we find the optimal
routing matrix?



Optimization with indirect learning

Algorithm:
▶ Start with initial routing matrix R0

▶ Observe queues and estimate steady-state Q(n)(R0)

▶ Key: Use an inversion procedure to get covariance matrix
▶ Use large-deviations approximation to get

P
(
Q

(n)
i (R) > bi

)
for any R

▶ Solve optimization problem for R∗

Advantages:
▶ Queue lengths are easier to estimate than covariances
▶ Fast convergence
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First inversion procedure



From marginal queue lengths to variances
[Mandjes & van de Meent (2009) Resource dimensioning through buffer sampling]

Work flow:

A(n)(·) Routing−−−−−→ I
(n)
i (·) Queueing−−−−−−→ Q

(n)
i

Inversion:
Q

(n)
i

“Inversion”−−−−−−−→ V ar
(
I
(n)
i (·)

)

based on the large-deviations principle

lim
n→∞

− 1

n
log

(
P
(
Q

(n)
i > b

))
= inf

t<0


[
b− (µi − λi)t

]2
2nV ar

(
I
(n)
i (t)

)
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From marginal queue lengths to variances

Variance estimator:

V̂
(n,N)
i,ϵ (t) ≜ inf

b∈[ϵ,1/ϵ]


[
b− (µi − λi)t

]2
−2 log

(
P̂N

(
Q

(n)
i > b

))
 ?

≈ V ar
(
I
(n)
i (t)

)

Theorem
Fix t < 0. We have

lim
n→∞

lim
N→∞

n
∣∣∣V̂ (n,N)

i,ϵ (t)− V ar
(
I
(n)
i (t)

)∣∣∣ = 0, a.s.,

for all ϵ small enough.
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From marginal queue lengths to variances

▶ Need to find the m(m+ 1)/2 distinct Cov
(
A

(n)
i (·), A(n)

j (·)
)

▶ For each of the k queues we obtain a linear equation

V̂
(n,N)
i,ϵ (·) ≈ V ar

(
I
(n)
j (·)

)
=

m∑
j=1

m∑
q=1

Rj,iRq,iCov
(
A

(n)
j (·), A(n)

q (·)
)

▶ Repeating this for different R yields enough l.i. equations

Use joint queue lengths to get more equations directly?
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Second inversion
procedure



From pair-wise joint queue lengths to covariances

Work flow:

A(n)(·) Routing−−−−−→
(
I
(n)
i (·), I(n)j (·)

)
Queueing−−−−−−→

(
Q

(n)
i , Q

(n)
j

)

Inversion:(
Q

(n)
i , Q

(n)
j

)
“Inversion”−−−−−−−→ Cov

(
I
(n)
i (·), I(n)j (·)

)
based on the large-deviations principle

lim
n→∞

− 1

n
log

(
P
(
ciQ

(n)
i + cjQ

(n)
j > 1

))
= inf

t,s<0


[
1− ci

(
µi − λi

)
t− cj

(
µj − λj

)
s
]2

2V ar
(
ciI

(n)
i (t) + cjI

(n)
j (s)

)


Martin Zubeldia Learning traffic correlations in multi-class queueing systems by sampling workloads



From pair-wise joint queue lengths to covariances

Work flow:

A(n)(·) Routing−−−−−→
(
I
(n)
i (·), I(n)j (·)

)
Queueing−−−−−−→

(
Q

(n)
i , Q

(n)
j

)
Inversion:(

Q
(n)
i , Q

(n)
j

)
“Inversion”−−−−−−−→ Cov

(
I
(n)
i (·), I(n)j (·)

)

based on the large-deviations principle

lim
n→∞

− 1

n
log

(
P
(
ciQ

(n)
i + cjQ

(n)
j > 1

))
= inf

t,s<0


[
1− ci

(
µi − λi

)
t− cj

(
µj − λj

)
s
]2

2V ar
(
ciI

(n)
i (t) + cjI

(n)
j (s)

)


Martin Zubeldia Learning traffic correlations in multi-class queueing systems by sampling workloads



From pair-wise joint queue lengths to covariances

Work flow:

A(n)(·) Routing−−−−−→
(
I
(n)
i (·), I(n)j (·)

)
Queueing−−−−−−→

(
Q

(n)
i , Q

(n)
j

)
Inversion:(

Q
(n)
i , Q

(n)
j

)
“Inversion”−−−−−−−→ Cov

(
I
(n)
i (·), I(n)j (·)

)
based on the large-deviations principle

lim
n→∞

− 1

n
log

(
P
(
ciQ

(n)
i + cjQ

(n)
j > 1

))
= inf

t,s<0


[
1− ci

(
µi − λi

)
t− cj

(
µj − λj

)
s
]2

2V ar
(
ciI

(n)
i (t) + cjI

(n)
j (s)

)


Martin Zubeldia Learning traffic correlations in multi-class queueing systems by sampling workloads



Feasibility of the inversion

Covariance estimator:

Ĉ
(n,N)
i,j,ϵ (t, s) ≜ inf

ci,cj∈[ϵ,1/ϵ]

{
· · · · · · · · · · · ·

}
?
≈ Cov

(
I
(n)
i (t), I

(n)
j (s)

)

Theorem
If I(n)(·) is short-range dependent (H ≤ 1/2), and I

(n)
i (·) and

I
(n)
j (·) are non-negatively correlated (ρi,j ≥ 0), then

lim
n→∞

lim
N→∞

n
∣∣∣Ĉ(n,N)

i,j,ϵ (t, t)− Cov
(
I
(n)
i (t), I

(n)
j (t)

)∣∣∣ = 0, a.s.,

for all ϵ small enough.
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Feasibility of the inversion

▶ Need to find the m(m+ 1)/2 distinct Cov
(
A

(n)
i (·), A(n)

j (·)
)

▶ For each of the k queues we obtain a linear equation

V̂
(n,N)
i,ϵ (·) ≈

m∑
j=1

m∑
q=1

Rj,iRq,iCov
(
A

(n)
j (·), A(n)

q (·)
)

▶ For each of the k(k − 1)/2 pairs (i, j), with i < j, we get

Ĉ
(n,N)
i,j,ϵ (·, ·) ≈

m∑
q=1

m∑
l=1

Rq,iRl,jCov
(
A

(n)
j (·), A(n)

q (·)
)

▶ If m ≤ k, these are enough for a single R
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Fundamental limitation

Theorem
If I(n)(·) is long-range dependent (H > 1/2), and I

(n)
i (·) and

I
(n)
j (·) are negatively correlated (ρi,j < 0), then

Cov
(
I
(n)
i (t), I

(n)
j (t)

)
cannot be recovered from the large

deviations behavior of ciQ
(n)
i + cjQ

(n)
j .

There is an inherent loss of information!
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Why do we have this
limitation?



Intuition with queues as reflected processes

Note: Q(n)
i (·) and Q

(n)
j (·) are the reflection at 0 of

W
(n)
i (t) ≜ I

(n)
i (t)− µit and W

(n)
j (t) ≜ I

(n)
j (t)− µjt

In this case: Because of negative correlation:

▶ When I
(n)
i (·) grows faster, I(n)j (·) grows slower

▶ Q
(n)
i (·) increases and Q

(n)
j (·) decreases (until it’s reflected)

▶ Magnitude of correlation is lost in the reflection at 0
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Conclusions

▶ Inputs’ variances can be recovered from queue lengths
⇒ Arrivals’ covariances can be recovered with a few
iterations

▶ Short-range dependent inputs + non-negative correlations
⇒ Arrivals’ covariances can be recovered with one iteration

▶ Long-range dependent inputs + negative correlations
⇒ Inputs’ covariances cannot be recovered

▶ Can be extended to multi-path routing in acyclic networks
(needs much more involved large-deviations results)
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Thank you!


