Learning traffic correlations in multi-class queueing systems by sampling workloads

Martin Zubeldia (Georgia Tech)

Joint work with Michel Mandjes (U. of Amsterdam)

November 10th, 2021 IFIP Performance

Motivation: Backbone of the Internet

Figure: OVH Europe network

Martin Zubeldia

Motivation: Backbone of the Internet

Figure: OVH Europe network

Features:

Martin Zubeldia

Motivation: Backbone of the Internet

Figure: OVH Europe network

Features:

- Traffic: Highly aggregated
- Routing: Mostly static

Martin Zubeldia

Assumptions:

• Arrivals: $A(\cdot)$ is Gaussian with known rate $\lambda \in \mathbb{R}^m_+$ and unknown covariance matrix $\Sigma : \mathbb{R}^2 \to \mathbb{R}^{m \times m}$

Martin Zubeldia

Assumptions:

- Arrivals: $A(\cdot)$ is Gaussian with known rate $\lambda \in \mathbb{R}^m_+$ and unknown covariance matrix $\Sigma : \mathbb{R}^2 \to \mathbb{R}^{m \times m}$
- **Routing:** Static deterministic split with routing matrix *R*

Assumptions:

- Arrivals: $A(\cdot)$ is Gaussian with known rate $\lambda \in \mathbb{R}^m_+$ and unknown covariance matrix $\Sigma : \mathbb{R}^2 \to \mathbb{R}^{m \times m}$
- **Routing:** Static deterministic split with routing matrix *R*

Objective: Learn

$$R^* \in \arg\min\left\{\max_{i \in \{1, \dots, k\}} \left\{ \mathbb{P}(Q_i(R) > b_i) \right\} \right\}$$

Martin Zubeldia

Additional assumptions on $A(\cdot)$

Assumption: Many-sources regime

$$A(\cdot) = A^{(n)} = \frac{1}{n} \sum_{i=1}^{n} X^{(i)}(\cdot),$$

where $\{X^{(i)}(\cdot)\}_{i>1}$ are i.i.d.

Additional assumptions on $A(\cdot)$

Assumption: Many-sources regime

$$A(\cdot) = A^{(n)} = \frac{1}{n} \sum_{i=1}^{n} X^{(i)}(\cdot),$$

where $\{X^{(i)}(\cdot)\}_{i\geq 1}$ are i.i.d.

For simplicity: multivariate fractional Brownian motions (mfBm)

$$Cov\left(A_{i}^{(n)}(t), \ A_{j}^{(n)}(s)\right) = \frac{\sigma_{i}\sigma_{j}\rho_{i,j}}{2n}\left(|t|^{2H} + |s|^{2H} - |s-t|^{2H}\right)$$

- Hurst parameter: $H \in (0, 1)$
- Variance: $\sigma_i^2 > 0$
- Correlation: $\rho_{i,j} \in [-1, 1]$

Martin Zubeldia

How do we find the optimal routing matrix?

Algorithm:

Start with initial routing matrix R₀

- Start with initial routing matrix R_0
- Observe queues and estimate steady-state $Q^{(n)}(R_0)$

- Start with initial routing matrix R_0
- Observe queues and estimate steady-state $Q^{(n)}(R_0)$
- ▶ Key: Use an inversion procedure to get covariance matrix

- Start with initial routing matrix R_0
- Observe queues and estimate steady-state $Q^{(n)}(R_0)$
- **Key:** Use an inversion procedure to get covariance matrix
- Use large-deviations approximation to get $\mathbb{P}\left(Q_i^{(n)}(R) > b_i\right)$ for any R

- Start with initial routing matrix R_0
- Observe queues and estimate steady-state $Q^{(n)}(R_0)$
- ► Key: Use an inversion procedure to get covariance matrix
- Use large-deviations approximation to get $\mathbb{P}\left(Q_i^{(n)}(R) > b_i\right)$ for any R
- Solve optimization problem for R*

Algorithm:

- Start with initial routing matrix R₀
- Observe queues and estimate steady-state $Q^{(n)}(R_0)$
- Key: Use an inversion procedure to get covariance matrix
- ► Use large-deviations approximation to get $\mathbb{P}\left(Q_i^{(n)}(R) > b_i\right)$ for any R
- ▶ Solve optimization problem for *R*^{*}

Advantages:

- Queue lengths are easier to estimate than covariances
- Fast convergence

First inversion procedure

[Mandjes & van de Meent (2009) Resource dimensioning through buffer sampling]

[Mandjes & van de Meent (2009) Resource dimensioning through buffer sampling]

Work flow:

$$A^{(n)}(\cdot) \xrightarrow{Routing} I_i^{(n)}(\cdot) \xrightarrow{Queueing} Q_i^{(n)}$$

[Mandjes & van de Meent (2009) Resource dimensioning through buffer sampling]

Work flow:

$$A^{(n)}(\cdot) \xrightarrow{Routing} I_i^{(n)}(\cdot) \xrightarrow{Queueing} Q_i^{(n)}$$

Inversion:

$$Q_i^{(n)} \xrightarrow{``Inversion"} Var\left(I_i^{(n)}(\cdot)\right)$$

Martin Zubeldia

[Mandjes & van de Meent (2009) Resource dimensioning through buffer sampling]

Work flow:

$$A^{(n)}(\cdot) \xrightarrow{Routing} I_i^{(n)}(\cdot) \xrightarrow{Queueing} Q_i^{(n)}$$

Inversion:

$$Q_i^{(n)} \xrightarrow{\text{"Inversion"}} Var\left(I_i^{(n)}(\cdot)\right)$$

based on the large-deviations principle

$$\lim_{n \to \infty} -\frac{1}{n} \log \left(\mathbb{P} \left(Q_i^{(n)} > b \right) \right) = \inf_{t < 0} \left\{ \frac{\left[b - (\mu_i - \overline{\lambda}_i)t \right]^2}{2n Var \left(I_i^{(n)}(t) \right)} \right\}$$

Martin Zubeldia

Variance estimator:

$$\hat{V}_{i,\epsilon}^{(n,N)}(t) \triangleq \inf_{b \in [\epsilon,1/\epsilon]} \left\{ \frac{\left[b - (\mu_i - \overline{\lambda}_i)t\right]^2}{-2\log\left(\hat{\mathbb{P}}_N\left(Q_i^{(n)} > b\right)\right)} \right\} \stackrel{?}{\approx} Var\left(I_i^{(n)}(t)\right)$$

Variance estimator:

$$\hat{V}_{i,\epsilon}^{(n,N)}(t) \triangleq \inf_{b \in [\epsilon,1/\epsilon]} \left\{ \frac{\left[b - (\mu_i - \overline{\lambda}_i)t\right]^2}{-2\log\left(\hat{\mathbb{P}}_N\left(Q_i^{(n)} > b\right)\right)} \right\} \stackrel{?}{\approx} Var\left(I_i^{(n)}(t)\right)$$

Theorem

Fix t < 0. We have

$$\lim_{n \to \infty} \lim_{N \to \infty} n \left| \hat{V}_{i,\epsilon}^{(n,N)}(t) - Var\left(I_i^{(n)}(t) \right) \right| = 0, \quad a.s.,$$

for all ϵ small enough.

Martin Zubeldia

• Need to find the m(m+1)/2 distinct $Cov\left(A_i^{(n)}(\cdot), A_j^{(n)}(\cdot)\right)$

• Need to find the m(m+1)/2 distinct $Cov\left(A_i^{(n)}(\cdot), A_j^{(n)}(\cdot)\right)$

For each of the k queues we obtain a linear equation

$$\hat{V}_{i,\epsilon}^{(n,N)}(\cdot) \approx Var\left(I_j^{(n)}(\cdot)\right) = \sum_{j=1}^m \sum_{q=1}^m R_{j,i}R_{q,i}Cov\left(A_j^{(n)}(\cdot), \ A_q^{(n)}(\cdot)\right)$$

Martin Zubeldia

• Need to find the m(m+1)/2 distinct $Cov\left(A_i^{(n)}(\cdot), A_j^{(n)}(\cdot)\right)$

For each of the k queues we obtain a linear equation

$$\hat{V}_{i,\epsilon}^{(n,N)}(\cdot) \approx Var\left(I_j^{(n)}(\cdot)\right) = \sum_{j=1}^m \sum_{q=1}^m R_{j,i}R_{q,i}Cov\left(A_j^{(n)}(\cdot), A_q^{(n)}(\cdot)\right)$$

Repeating this for different R yields enough I.i. equations

Martin Zubeldia

• Need to find the m(m+1)/2 distinct $Cov\left(A_i^{(n)}(\cdot), A_j^{(n)}(\cdot)\right)$

For each of the k queues we obtain a linear equation

$$\hat{V}_{i,\epsilon}^{(n,N)}(\cdot) \approx Var\left(I_j^{(n)}(\cdot)\right) = \sum_{j=1}^m \sum_{q=1}^m R_{j,i}R_{q,i}Cov\left(A_j^{(n)}(\cdot), A_q^{(n)}(\cdot)\right)$$

Repeating this for different R yields enough I.i. equations

Use joint queue lengths to get more equations directly?

Martin Zubeldia

Second inversion procedure

From pair-wise joint queue lengths to covariances

Work flow:

$$A^{(n)}(\cdot) \xrightarrow{Routing} \left(I_i^{(n)}(\cdot), \, I_j^{(n)}(\cdot) \right) \xrightarrow{Queueing} \left(Q_i^{(n)}, \, Q_j^{(n)} \right)$$

Martin Zubeldia

From pair-wise joint queue lengths to covariances

Work flow:

$$A^{(n)}(\cdot) \xrightarrow{Routing} \left(I_i^{(n)}(\cdot), \, I_j^{(n)}(\cdot) \right) \xrightarrow{Queueing} \left(Q_i^{(n)}, \, Q_j^{(n)} \right)$$

Inversion:

$$\left(Q_i^{(n)}, \, Q_j^{(n)}\right) \xrightarrow{\text{``Inversion''}} Cov\left(I_i^{(n)}(\cdot), \, I_j^{(n)}(\cdot)\right)$$

Martin Zubeldia

From pair-wise joint queue lengths to covariances

Work flow:

$$A^{(n)}(\cdot) \xrightarrow{Routing} \left(I_i^{(n)}(\cdot), \, I_j^{(n)}(\cdot) \right) \xrightarrow{Queueing} \left(Q_i^{(n)}, \, Q_j^{(n)} \right)$$

Inversion:

$$\left(Q_i^{(n)}, \, Q_j^{(n)}\right) \xrightarrow{\text{``Inversion''}} Cov\left(I_i^{(n)}(\cdot), \, I_j^{(n)}(\cdot)\right)$$

based on the large-deviations principle

$$\lim_{n \to \infty} -\frac{1}{n} \log \left(\mathbb{P} \left(c_i Q_i^{(n)} + c_j Q_j^{(n)} > 1 \right) \right)$$
$$= \inf_{t,s < 0} \left\{ \frac{\left[1 - c_i \left(\mu_i - \overline{\lambda}_i \right) t - c_j \left(\mu_j - \overline{\lambda}_j \right) s \right]^2}{2Var \left(c_i I_i^{(n)}(t) + c_j I_j^{(n)}(s) \right)} \right\}$$

Martin Zubeldia

Covariance estimator:

$$\hat{C}_{i,j,\epsilon}^{(n,N)}(t,s) \triangleq \inf_{c_i,c_j \in [\epsilon,1/\epsilon]} \left\{ \cdots \cdots \cdots \right\} \stackrel{?}{\approx} Cov\left(I_i^{(n)}(t), I_j^{(n)}(s)\right)$$

Covariance estimator:

$$\hat{C}_{i,j,\epsilon}^{(n,N)}(t,s) \triangleq \inf_{c_i,c_j \in [\epsilon,1/\epsilon]} \left\{ \cdots \cdots \right\} \stackrel{?}{\approx} Cov\left(I_i^{(n)}(t), I_j^{(n)}(s)\right)$$

Theorem

If $I^{(n)}(\cdot)$ is short-range dependent ($H \leq 1/2$), and $I^{(n)}_i(\cdot)$ and $I^{(n)}_j(\cdot)$ are non-negatively correlated ($\rho_{i,j} \geq 0$), then

$$\lim_{n\to\infty}\lim_{N\to\infty}n\left|\hat{C}_{i,j,\epsilon}^{(n,N)}(t,t)-Cov\left(I_i^{(n)}(t),\,I_j^{(n)}(t)\right)\right|=0,\quad a.s.,$$

for all ϵ small enough.

Martin Zubeldia

• Need to find the m(m+1)/2 distinct $Cov\left(A_i^{(n)}(\cdot), A_j^{(n)}(\cdot)\right)$

• Need to find the m(m+1)/2 distinct $Cov\left(A_i^{(n)}(\cdot), A_j^{(n)}(\cdot)\right)$

For each of the k queues we obtain a linear equation

$$\hat{V}_{i,\epsilon}^{(n,N)}(\cdot) \approx \sum_{j=1}^{m} \sum_{q=1}^{m} R_{j,i} R_{q,i} Cov\left(A_j^{(n)}(\cdot), \ A_q^{(n)}(\cdot)\right)$$

• Need to find the
$$m(m+1)/2$$
 distinct $Cov\left(A_i^{(n)}(\cdot), A_j^{(n)}(\cdot)\right)$

For each of the k queues we obtain a linear equation

$$\hat{V}_{i,\epsilon}^{(n,N)}(\cdot) \approx \sum_{j=1}^{m} \sum_{q=1}^{m} R_{j,i} R_{q,i} Cov\left(A_j^{(n)}(\cdot), \ A_q^{(n)}(\cdot)\right)$$

For each of the k(k-1)/2 pairs (i, j), with i < j, we get

$$\hat{C}_{i,j,\epsilon}^{(n,N)}(\cdot,\cdot) \approx \sum_{q=1}^{m} \sum_{l=1}^{m} R_{q,i} R_{l,j} Cov\left(A_j^{(n)}(\cdot), \ A_q^{(n)}(\cdot)\right)$$

Martin Zubeldia

• Need to find the
$$m(m+1)/2$$
 distinct $Cov\left(A_i^{(n)}(\cdot), A_j^{(n)}(\cdot)\right)$

For each of the k queues we obtain a linear equation

$$\hat{V}_{i,\epsilon}^{(n,N)}(\cdot) \approx \sum_{j=1}^{m} \sum_{q=1}^{m} R_{j,i} R_{q,i} Cov\left(A_j^{(n)}(\cdot), \ A_q^{(n)}(\cdot)\right)$$

For each of the k(k-1)/2 pairs (i, j), with i < j, we get

$$\hat{C}_{i,j,\epsilon}^{(n,N)}(\cdot,\cdot) \approx \sum_{q=1}^{m} \sum_{l=1}^{m} R_{q,i} R_{l,j} Cov\left(A_j^{(n)}(\cdot), \ A_q^{(n)}(\cdot)\right)$$

lf $m \leq k$, these are enough for a single R

Martin Zubeldia

Fundamental limitation

Theorem

If $I^{(n)}(\cdot)$ is long-range dependent (H > 1/2), and $I_i^{(n)}(\cdot)$ and $I_j^{(n)}(\cdot)$ are negatively correlated $(\rho_{i,j} < 0)$, then $Cov\left(I_i^{(n)}(t), I_j^{(n)}(t)\right)$ cannot be recovered from the large deviations behavior of $c_iQ_i^{(n)} + c_jQ_j^{(n)}$.

There is an inherent loss of information!

Martin Zubeldia

Why do we have this limitation?

Note: $Q_i^{(n)}(\cdot)$ and $Q_j^{(n)}(\cdot)$ are the reflection at 0 of $W_i^{(n)}(t) \triangleq I_i^{(n)}(t) - \mu_i t$ and $W_j^{(n)}(t) \triangleq I_j^{(n)}(t) - \mu_j t$

Note:
$$Q_i^{(n)}(\cdot)$$
 and $Q_j^{(n)}(\cdot)$ are the reflection at 0 of
 $W_i^{(n)}(t) \triangleq I_i^{(n)}(t) - \mu_i t$ and $W_j^{(n)}(t) \triangleq I_j^{(n)}(t) - \mu_j t$

In this case: Because of negative correlation:

• When $I_i^{(n)}(\cdot)$ grows faster, $I_i^{(n)}(\cdot)$ grows slower

Martin Zubeldia

Note:
$$Q_i^{(n)}(\cdot)$$
 and $Q_j^{(n)}(\cdot)$ are the reflection at 0 of
 $W_i^{(n)}(t) \triangleq I_i^{(n)}(t) - \mu_i t$ and $W_j^{(n)}(t) \triangleq I_j^{(n)}(t) - \mu_j t$

In this case: Because of negative correlation:

• When $I_i^{(n)}(\cdot)$ grows faster, $I_i^{(n)}(\cdot)$ grows slower

• $Q_i^{(n)}(\cdot)$ increases and $Q_j^{(n)}(\cdot)$ decreases (until it's reflected)

Martin Zubeldia

Note:
$$Q_i^{(n)}(\cdot)$$
 and $Q_j^{(n)}(\cdot)$ are the reflection at 0 of
 $W_i^{(n)}(t) \triangleq I_i^{(n)}(t) - \mu_i t$ and $W_j^{(n)}(t) \triangleq I_j^{(n)}(t) - \mu_j t$

In this case: Because of negative correlation:

• When $I_i^{(n)}(\cdot)$ grows faster, $I_i^{(n)}(\cdot)$ grows slower

• $Q_i^{(n)}(\cdot)$ increases and $Q_j^{(n)}(\cdot)$ decreases (until it's reflected)

Magnitude of correlation is lost in the reflection at 0

Martin Zubeldia

 Inputs' variances can be recovered from queue lengths ⇒ Arrivals' covariances can be recovered with a few iterations

- Inputs' variances can be recovered from queue lengths ⇒ Arrivals' covariances can be recovered with a few iterations
- Short-range dependent inputs + non-negative correlations
 Arrivals' covariances can be recovered with one iteration

- Inputs' variances can be recovered from queue lengths ⇒ Arrivals' covariances can be recovered with a few iterations
- Short-range dependent inputs + non-negative correlations
 Arrivals' covariances can be recovered with one iteration
- Long-range dependent inputs + negative correlations
 Inputs' covariances cannot be recovered

- Inputs' variances can be recovered from queue lengths ⇒ Arrivals' covariances can be recovered with a few iterations
- Short-range dependent inputs + non-negative correlations
 Arrivals' covariances can be recovered with one iteration
- Long-range dependent inputs + negative correlations
 Inputs' covariances cannot be recovered
- Can be extended to multi-path routing in acyclic networks (needs much more involved large-deviations results)

Martin Zubeldia

Thank you!