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Trends: Explosive Growth of Data-Centric Applications
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Datacenters (“hyper-scale”)

Traffic
Growth

Interconnecting networks:  

a critical infrastructure

of our digital society. Aggregate Server Traffic in Google datacenter
Jupiter rising @ SIGCOMM 2015



• “End of Moore‘s Law in networking” [1]

• Hence: more equipment, larger networks (big investment)

• Better infrastructure design for more efficient use
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Motivation: Network Infrastructure Design for Efficient Use
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Opportunity for researchers



• Traditional network topology designs are demands oblivious

◦ Assuming demands are “all-to-all”

◦ Optimize the worse case of assumed demands

25.10.2021 Improved Scalability of Demand-Aware Datacenter Topologies With Minimal Route Lengths and Congestion (IFIP Performance 2021) Page 4

Demand Oblivious Network Design

Many flavors, 

but in common: fixed

and oblivious to

actual demand.
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E.g., Fat-Tree (Clos) Topology for Data Centers

Fat-Tree is almost full bisection and  good for all-to-all 
traffic
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• However, traffic, e.g., in DCN, is often not all-to-all 
but sparse
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Real-World Traffic ≠ Uniform

Traffic demands (normalized) between ToR switches. Halperin et al., SIGCOMM’11 Heatmap of rack to rack traffic. Color intensity is log-scale and normalized. Ghobadi et al., SIGCOMM’16

25.10.2021 Improved Scalability of Demand-Aware Datacenter Topologies With Minimal Route Lengths and Congestion (IFIP Performance 2021)

“Data reveal that 46-99% of the rack 
pairs exchange no traffic at all”



• Real communication are usually structured

• Demands-aware design assumes some features of 
demands are known

• Demands-aware design is broadly applied to all layers of 
networking

◦ E.g., reconfigurable networks
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Demand-Aware Network Design

Networks Capable of Change. Jennifer Rexford.
Infocom 2019 Keynote



• Goals of  demands-aware, bounded-degree
network design:
◦ Satisfying a given degree bound  Δ ≥ 5

◦ Minimize both the average route length and the 
congestion for given demands

• Challenges:

◦ A constant Δ indicates a sparse network: high 
diameter and low connectivity

◦ Dilemma: Short route length vs Low Congestion
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General Goals and Challenges [Avin et al., DISC17, INFOCOM19]

Short route length vs Low Congestion

Source: Avin et al., INFOCOM19
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Input of Demands-Aware Bounded-Degree Network Design Problem

•Given:
◦ A degree bound  ∆∈ ℕ≥5

◦ Demands Matrix 𝐷:

• Define demands (weighted) graph GD: if 𝑑𝑖,𝑗 > 0, then an edge {𝑖, 𝑗}
with the weight 𝑤𝑖,𝑗 = 𝑑𝑖,𝑗 + 𝑑𝑗,𝑖
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Each entry 𝑑𝑖 ,𝑗 means 

a communication 
intensity (frequency) 
from 𝑖 to 𝑗

Source: Avin et al., INFOCOM19



• Given a demands matrix 𝐷

• A network 𝑁 and a routing scheme Γ(𝑁) for serving 𝐷 (unsplit flow)

• The weighted route length:

• The congestion:
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Definitions of Congestion and Route Length

𝐿 𝐷, Γ(𝑁) =
(𝑖,𝑗)∈𝐷

𝑤𝑖,𝑗 ∙ 𝑑𝑖𝑠𝑡Γ 𝑁 (𝑖, 𝑗)

𝐶 𝐷, Γ(𝑁) = 𝑚𝑎𝑥𝑒∈Γ(𝑁)
𝑒∈Γ𝑖,𝑗

𝑤𝑖,𝑗



• Input: a demands 𝐷 and ∆∈ ℕ≥5
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Objective of 𝒄, 𝒅 -Bounded Network Design ( 𝒄, 𝒅 -BND Problem)

• Output: a network 𝑁 ∈ 𝑁∆ and Γ(𝑁)

• 𝐿 𝐷, Γ(𝑁) ≤ 𝑐 ∙ L∗ 𝐷, Γ 𝑁 + 𝑐′

• C 𝐷,Γ(𝑁) ≤ 𝑑 ∙ C∗ 𝐷, Γ 𝑁 + 𝑑′

Optimal Route Lengths

Optimal Congestion

s.t.,
Source: Avin et al., INFOCOM19Source: Avin et al., INFOCOM19
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Previous Works

DISC 2017 INFOCOM 2019

CCR 2019

TON 2016
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Our Contributions in Complexity

Demand Graph 
𝑮𝑫

Optimize Route 
Lengths

Optimize 
Congestion

General Graphs NP-hard NP-hard

Trees NP-hard NP-hard
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Former Results

Our Results
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Our Contributions in 𝒄, 𝒅 -Approximation Ratio

Tree Demands 𝑮𝑫 [Avin et al, INFOCOM19] [This Paper]

(𝒄,𝒅)-Approximation
𝒄: route lengths
𝒅: congestion 

𝒍𝒐𝒈𝟐 ∆𝒎𝒂𝒙 + 𝟏 , ൗ𝟒 𝟑
∆𝑚𝑎𝑥: the max degree of 𝑁

𝟐, 𝟔
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• Demands 𝐷 induced by a star
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Star Example: Optimal Network Design 𝑵 by EgoTree

⋯

s

1 2 k-1 k

Weights 𝑊 = {𝑤1, 𝑤2, … , }𝑤𝑘

Construct 𝑁

• Construct a full tree of 𝑘 + 1 nodes

• Root has ∆ children, other nodes has ∆ − 1
children at maximum

⋯

⋯

⋯ ⋯ ⋯ ⋯

⋯ ⋯

∆

∆ − 1 ∆ − 1 ∆ − 1 ∆ − 1

∆ − 1 ∆ − 1 ∆ − 1



• Demands 𝐷 induced by a star (2-level tree)
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Star Example: Optimal Network Design 𝑵 by EgoTree

⋯

s

1 2 k-1 k

Weights 𝑊 = {𝑤1, 𝑤2, … , }𝑤𝑘

Construct 𝑁

• Sort 𝑊 non-increasingly to 𝑊 ′ = {𝑤′
1, 𝑤

′
2, … , }𝑤′

𝑘

• Set the root of 𝑁 as the original root 𝑠

• Insert nodes according to 𝑊 ′ sequentially by left-
right and up-down

⋯

⋯

⋯ ⋯ ⋯ ⋯

⋯ ⋯

∆

∆ − 1 ∆ − 1 ∆ − 1 ∆ − 1

∆ − 1 ∆ − 1 ∆ − 1

s

Easy to know it is optimal for route lengths



• Demands 𝐷 induced by general trees
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When Demands 𝐷 Induced By General Trees

⋯

s

Weights 𝑊 = {𝑤1, 𝑤2, … , }𝑤𝑘

Construct 𝑁

⋯ ⋯ ⋯⋯

⋯ ⋯

⋯⋯



• Considering each node and its children as a 
star in demands tree 𝐺𝐷

• For each star to build a EgoTree as before
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When Demands 𝐷 Induced By General Trees

⋯

s

Weights 𝑊 = {𝑤1, 𝑤2, … , }𝑤𝑘

⋯ ⋯ ⋯⋯

⋯ ⋯

⋯⋯

⋯

⋯

⋯ ⋯ ⋯ ⋯

⋯ ⋯

∆

∆ − 1 ∆ − 1 ∆ − 1 ∆ − 1

∆ − 1 ∆ − 1 ∆ − 1

⋯

⋯ ⋯ ⋯ ⋯

∆

∆ − 1 ∆ − 1 ∆ − 1 ∆ − 1

• Problem: these EgoTrees cannot 
be merged together to satisfy ∆

• But the sum of their route lengths 
provides a lower bound s



• build  EgoTrees with fan-out 𝛼 and 𝛽

• 𝛼 = Τ∆ − 1 2 and 𝛽 = Τ∆− 1 2

• 𝛼 + 𝛽 ≤ ∆
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Changes Fan-out Parameters of EgoTrees

⋯

s

Weights 𝑊 = {𝑤1, 𝑤2, … , }𝑤𝑘

⋯ ⋯ ⋯⋯

⋯ ⋯

⋯⋯

⋯

𝛽

⋯

⋯ ⋯ ⋯ ⋯

⋯ ⋯

𝛼

𝛽 𝛽 𝛽

𝛽 𝛽 𝛽

⋯

⋯ ⋯ ⋯ ⋯

𝛼

𝛽 𝛽 𝛽 𝛽

• For each node 𝑡 merging two 
EgoTrees at 𝑡

• Clearly, the degree of 𝑡: 𝛼 + 𝛽 ≤ ∆
• A feasible solution is obtained

t t

t



• Two EgoTrees built for a star at the center 𝑎 for different fan-out

• For a node t, its distance to 𝑎 is at most doubled after decreasing fan-outs

• Recall 𝐿 𝐷, Γ(𝑁) = σ(𝑖,𝑗)∈𝐷𝑤𝑖,𝑗 ∙ 𝑑𝑖𝑠𝑡Γ 𝑁 (𝑖, 𝑗)

• Easy to show 2-Approximation 
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2-Approximation of Optimal Route Lengths

⋯

⋯

⋯ ⋯ ⋯ ⋯

⋯ ⋯

∆

∆ − 1 ∆ − 1 ∆ − 1 ∆ − 1

∆ − 1 ∆ − 1 ∆ − 1 ⋯

⋯

⋯ ⋯ ⋯ ⋯

⋯ ⋯

𝛼

𝛽 𝛽 𝛽 𝛽

𝛽 𝛽 𝛽

a
a

Change Fan-out

t
t

𝛼 = Τ∆ − 1 2 and 𝛽 = Τ∆ − 1 2

⋯
1 2 k

a

⋯

EgoTree

t



• Demands 𝐷 induced by a star
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Strong Congestion Caused By EgoTrees

⋯

s

1 2 k-1 k

Weights 𝑊 = {𝑤1, 𝑤2, … , }𝑤𝑘 Construct 𝑁

• Sort 𝑊 non-increasingly to 𝑊 ′ = {𝑤′
1, 𝑤

′
2, … , }𝑤′

𝑘

• Set the root of 𝑁 as the original 𝑠

• Insert nodes according to 𝑊 ′ sequentially by left-
right and up-down

⋯

⋯

⋯ ⋯ ⋯ ⋯

⋯ ⋯

∆

∆ − 1 ∆ − 1 ∆ − 1 ∆ − 1

∆ − 1 ∆ − 1 ∆ − 1

s

Strong congestion on some links incident to the root



• A set of jobs 𝐽 = 𝑗1 , 𝑗2, … 𝑗𝑛 , where each 𝑗𝑖 ∈ 𝐽 has a duration 𝑙𝑖

• A set of machines 𝑀 = 𝑀1,𝑀2, …𝑀𝑚

• Assign each job to a machine to minimize the make-span

• First, sort  𝐽 in the order of non-increasing duration, denoted by  𝐽′

• Idea: assign 𝐽′ sequentially from 𝑀1 to 𝑀𝑚 by a round robin (2-approximation)
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Recall Scheduling On Identical Machines Problem

𝑴𝟏

𝑴𝒎

𝑴𝟐

⋮

𝑗1 𝑗2 𝑗3 𝑗𝑛⋯

𝑴𝟑



• Demands 𝐷 induced by a star
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Idea of Round-Robin Tree

⋯

s

1 2 k-1 k

Weights 𝑊 = {𝑤1, 𝑤2, … , }𝑤𝑘

Construct 𝑁

• Sort 𝑊 non-increasingly to 𝑊 ′ = {𝑤′
1, 𝑤

′
2, … , }𝑤′

𝑘

• Set the root of 𝑁 as the original 𝑠

• Assign 𝑊 ′ into ∆ machines, s.t., nodes always stay 
in the subtree of its assigned machine

• The load on these highlighted links are at most 
double of the optimal congestion.

⋯
∆

s

𝑴𝟏 𝑴𝟐

𝑴𝚫−𝟏

𝑴∆



• First change ∆ machines to 𝛼 = Τ∆ − 1 2 , for each subtree, place nodes as EgoTrees

• For congestion: as Τ∆ 𝛼 ≤ 3, then 6-Approximation achieved by Round-Robin Trees

• As 𝛽 ≥ 𝛼, it is easy to show 2-Approximation for route lengths
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The 𝟐, 𝟔 -Approximation By Round-Robin Trees

⋯𝛼

s

𝑴𝟏 𝑴𝟐

𝑴𝚫−𝟏

𝑴∆
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Demands Induced by Trees to Sparse Graphs

• Sparse Graphs: the average degree ∆𝑎𝑣𝑔 is a constant and some node might have non-
constant degree 
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Facebook Traffic Graph Is Sparse

Sampling time: 1 second

≥ 𝟗𝟓% Traffic 
Shows 
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Facebook Traffic Graph Is Sparse

Sampling time: 100 second

≥ 𝟗𝟓% Traffic 
Shows 
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Network Design For Sparse Demands

Sparse 𝑮𝑫 (∆𝒂𝒗𝒈) [Avin et al, INFOCOM19] [This Paper]

For near-optimal Route 
lengths (bounds by Avin et 

al, INFOCOM19)

∆𝒎𝒂𝒙 ≤ 12 ∙ ∆𝒂𝒗𝒈
∆𝑚𝑎𝑥: the max degree of 𝑁

∆𝒎𝒂𝒙 ≤ 3 ∙ ∆𝒂𝒗𝒈 + 𝟖
∆𝑚𝑎𝑥: the max degree of 𝑁
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Thank you! ☺

Summary of Our Contributions


