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Trends: Explosive Growth of Data-Centric Applications

Datacenters (“hyper-scale”)
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Interconnecting networks: ratTic
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Traffic generated by servers in our datacenters
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a critical infrastructure
of our digital society.
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Aggregate Server Traffic in Google datacenter
Jupiter rising @ SIGCOMM 2015
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Motivation: Network Infrastructure Design for Efficient Use
* “End of Moore’s Law in networking” [1]
* Hence: more equipment, larger networks (big investment) /7

* Better infrastructure design for more efficient use

e: Microsoft, 2019

[1] Sourc

25.10.2021 Improved Scalability of Demand-Aware Datacenter Topologies With Minimal Route Lengths and Congestion (IFIP Performance 2021)

Page 3



“» Lniversitat
’ wilen

Demand Oblivious Network Design

* Traditional network topology designs are demands oblivious
o Assuming demands are “all-to-all”

o Optimize the worse case of assumed demands

Many flavors,

but in common: fixed
and oblivious to
actual demand.
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E.g., Fat-Tree (Clos) Topology for Data Centers

Fat-Tree is almost full bisection and good for all-to-all
traffic
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Real-World Traffic # Uniform

* However, traffic, e.g., in DCN, is often not all-to-all

but sparse
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Traffic demands (normalized) between ToR switches. Halperin et al., SIGCOMM’11

From T6p of Rack Switch

Source rack

“Data reveal that 46-99% of the rack
pairs exchange no trafficat all”
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Heatmap of rack to rack traffic. Color intensity is log-scale and normalized. Ghobadi et al., SIGCOMM’16
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Demand-Aware Network Design

* Real communication are usually structured

. Application Layer
 Demands-aware design assumes some features of

P _

Transport Layer
 Demands-aware design is broadly applied to all layers of

networking
Network Layer

Bl Link / Physical Layer

Networks Capable of Change. Jennifer Rexford.
Infocom 2019 Keynote

o E.g., reconfigurable networks
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General Goals and Challenges [Avin et al., DISC17, INFOCOM19]

* Goals of demands-aware, bounded-degree
network design:

o Satisfying a given degree bound A > 5 Short route length vs Low Congestion

° Minimize both the average route length and the
congestion for given demands

* Challenges:
W

o A constant A indicates a sparse network: high
diameter and low connectivity

Short route length: Low congestion:
o Dilemma: Short route length vs Low Congestion bottleneck high degree/
long routes

Source: Avin et al., INFOCOM19
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Input of Demands-Aware Bounded-Degree Network Design Problem

* Given:
Each entry d; ; means
(o] . .
A degree bound AE NzS a communication
. . 1 2 3 4 5 B T intensity (frequency)
cDemands Matrix D: 7= fom 10
G5 13 G5 65 55 65 ]
2|2 o £ 0 @ o 2=
65 65 65
3 1 1 o) 2 Q ) 1
132 65 65 1
4l o = 0 = 0o o
65 B85 65
5L o =2 & 0 o0 o
65 B85 B5
6= o o o 0 o =+
65 65
712 &2 L g o0 2 o
65 B3 13 (7347}

Source: Avin et al., INFOCOM19

* Define demands (weighted) graph Gp: if di’j > 0, then an edge {i, j}
with the Welght Wi = di,j + dj,i
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* Given a demands matrix D i

ioooon:—s

* A network N and a routing schéme ['(N) for serving D (unsplit flow)

* The weighted route length:

L(D,T(N)) = Z w, ;- distro (i)

(i,j)€D
* The congestion:

C(D,T(V)) = maxeerqy) )
ee
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Objective of (c, d)-Bounded Network Design ((c, d)-BND Problem)

* Input: a demands D and A€ N * Output: a network N € Ny and I'(N)
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L Optimal Route Lengths \d/—c//

Source: Avin et al., INFOCOM19

s.t., ° L(D,F(N)) <c {L*(D;F(N)j-F c'

Source: Avin et al., INFOCOM19

-c(D,T(N)) <d -[C*(D, F(N))] +d’

Optimal Congestion
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Demand Graph Optimize Route Optimize
Gp Lengths Congestion

General Graphs NP-hard NP-hard

NP-hard NP-hard

Former Results

Our Results
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TAESMll Tree Demands G, [Avin et al, INFOCOM19] [This Paper]

(c,d)-Approximation ) 4
c: route lengths (L09*(Amax +1),%/3) (2,6)

Amax: the max degree of N

d: congestion
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Star Example: Optimal Network Design N by EgoTree

* Demands D induced by a star e Construct a full tree of k + 1 nodes

R e — * Root has A children, other nodes has A — 1
e & 5% e | children at maximum

B3 13 B B3 B3 &5

s
Construct N
Ao

Weights W = {wy, wy, ..., Wy }
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Star Example: Optimal Network Design N by EgoTree

* Demands D induced by a star (2-level tree) * Sort W non-increasingly to W' = {w',w’,, ..., w'}

1 2 3 4 5 6 7T * Set the root of N as the original root s
1[e £ £ T T T =
| 65 13 65 65 65 65 ‘

* Insert nodes according to I//' sequentially by left-

s right and up-down S
A. Construct N

Weights W = {wy, wy, ..., Wy }

Easy to know it is optimal for route lengths

25.10.2021 Improved Scalability of Demand-Aware Datacenter Topologies With Minimal Route Lengths and Congestion (IFIP Performance 2021) Page 16
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When Demands D Induced By General Trees

* Demands D induced by general trees

[
(X N 5]
|
= B
=] tn
o Gy
wf =4

1 65 13 65 65 55 65

22 o X 0 06 o
65 E5 65

3|+ L g 2 g o 2 .
13 &5 B5 13

41+ 0 = 0 £ 0 @ —
65 65 65 -

5|1 o = 4 o o @ ‘ I
65 65 B5 y

6] o 06 8 @ 0 =+ -l S
65 65
3 2 1 ER

Mo o5 15 @ % 4 © Construct N

N

Weights W = {w;, wy, ..., wi }

25.10.2021 Improved Scalability of Demand-Aware Datacenter Topologies With Minimal Route Lengths and Congestion (IFIP Performance 2021)

Page 17



gz Lniversitat
L wilen

* Problem: these EgoTrees cannot
be merged together to satisfy A
e But the sum of their route lengths

When Demands D Induced By General Trees R provides a lower bound

* Considering each node and its children as a
star in demands tree Gp

* For each star to build a EgoTree assbefore

- ® wn ks W N e
|»—-

N

Weights W = {w;, wy, ..., wi }

25.10.2021 Improved Scalability of Demand-Aware Datacenter Topologies With Minimal Route Lengths and Congestion (IFIP Performance 2021) Page 18
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* Foreach node t merging two

EgoTrees att
* Clearly, thedegreeoft: a + < A
Changes Fan-out Parameters of EgoTrees » Afeasible solution is obtained

* build EgoTrees with fan-out o and [

* a=[(A-1)/2]and g =[(A—-1)/2]
ca+f <A s

=
rf
- w
e
=l
wl o
w =l
(s

=I [s2] w oW [ =
=
g @ @ o 3k o

G» @ @ @ @ @ §

D NI

Weights W = {w;, wy, ..., wi }
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2-Approximation of Optimal Route Lengths
* Two EgoTrees built for a star at the center a for different fan-out

* For a node t, its distance to a is at most doubled after decreasing fan-outs
* Recall L(D,T'(N)) = X(; jyep Wi,j * distrn) (.))

* Easyto show 2-Approximation a

/w Change Fan-out

t
a=[(A-1)/2]andp =[(A-1)/2]

25.10.2021 Improved Scalability of Demand-Aware Datacenter Topologies With Minimal Route Lengths and Congestion (IFIP Performance 2021) Page 20
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« Demands / ced by a star * Sort W non-increasingly to W' = {w',w’,, .., w'}
1 ' Strong congestion on some links incident to the root
1|10
o by left-
® s

Weights W = {wy, w,, ..., Wy } Construct N
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Recall Scheduling On Identical Machines Problem \“

* Aset of jobs /] = {J;, 5, ...J»}, Where each j; € ] has a duration [;
* Aset of machines M = {M,,M,, ..M, }

* Assign each job to a machine to minimize the make-span

* First, sort / in the order of non-increasing duration, denoted by /'

* |dea: assign ]’ sequentially from M, to M,,, by a round robin (2-approximation)

25.10.2021 Improved Scalability of Demand-Aware Datacenter Topologies With Minimal Route Lengths and Congestion (IFIP Performance 2021) Page 22



* Sort W non-increasingly to W' = {w',,w',, ..., w',}

Idea of Round-Robin Tree * Set the root of N as the original s

- Demands D induced by a star * Assign W' into A machines, s.t., nodes always stay
in the subtree of its assigned machine

1 2 2 4 5 e 7
2 1 1 1 2 3

1 | o = = = = = \ * The load on these highlighted links are at most

B3 13 B B3 B3 &5

s double of the optimal congestion.

S
Construct N
P -2 ° MV, A\. M,

Weights W = {w, wy, ..., Wi }

25.10.2021 Improved Scalability of Demand-Aware Datacenter Topologies With Minimal Route Lengths and Congestion (IFIP Performance 2021) Page 23



The (2, 6)-Approximation By Round-Robin Trees

* First change A machines to @ = [(A — 1)/2], for each subtree, place nodes as EgoTrees
* For congestion: as A/a < 3, then 6-Approximation achieved by Round-Robin Trees

* As f = a, itis easy to show 2-Approximation for route lengths

S
Mm M,
M

A-1

25.10.2021 Improved Scalability of Demand-Aware Datacenter Topologies With Minimal Route Lengths and Congestion (IFIP Performance 2021) Page 24
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Demands Induced by Trees to Sparse Graphs

* Sparse Graphs: the average degree A, is a constant and some node might have non-
constant degree

25.10.2021 Improved Scalability of Demand-Aware Datacenter Topologies With Minimal Route Lengths and Congestion (IFIP Performance 2021) Page 25
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Facebook Traffic Graph Is Sparse Shows Aavg 4

Boxplots: cluster: database, interval size: 1 sec Boxplots: cluster: hadoop, interval size: 1 sec
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Facebook Traffic Graph Is Sparse Shows Aavg <4
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Average degree Average degree

Boxplots: cluster: database, interval size: 100 sec Boxplots: cluster: hadoop, interval size: 100 sec
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Network Design For Sparse Demands

For near-optimal Route
Amax <12 Dgpy  Dpax <3 gy +8

Amax: the max degree of N Amax: the max degree of N

lengths (bounds by Avin et
al, INFOCOM19)
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Improved Scalability of Demand-Aware Datacenter Topologies With Minimal

Route Lengths and Congestion
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o 0.6

Y 1000 0.4
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Destination rack

= Demands D induced by a star

Weights W = {wy, wy, ..., Wi}

right and up-down *

* Input: a demands D and A€ R, + Output: a network N € Ny and T(N)

Eiiiiis Optimal Route Lengths
st “L(D,T(W)) < ¢ (D, I(N)) + ¢!

+C(D,T(N)) < d-C*(D,T(N)) +d'
Optimal Congestion

* Sort W non-increasingly to W' = {w'y, w's, .., W'y}
* Set the root of N as the original s

« Insert nodes according to W' sequentially by left-
right and up-down ¢

Summary of Our Contributions

il Demand Graph | Optimize Route Optimize
RS Gp Lengths Congestion

General Graphs NP-hard NP-hard

%
Tree Demands Gp [This Paper]

(c,d)-Approximation (2,6)
c: route lengths ’
d: congestion

For near-optimal Route >3
lengths (bounds by Avin et Amax =3+ Agug +8
Apax: the max degree of N

NP-hard

(10g% (Bmax + 1), %/3)

Anax: max degree of N

Amax 212 Bayg
Apgy: the max degree of N

al, INFOCOM19)

Boxplots: cluster: database, interval size: 100 sec

> 95% Traffic
Shows Ay, < 4

Boxplots: cluster: hadoop, interval size: 1 sec

.3%7@)?,,*.___
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Application Layer 0
Transport Layer 0

Network Layer

Link / Physical Layer o

letworks Capable of Change. Jennifer Rexford.
Infocom 2019 Keynote




