Speed Scaling with Sum-Power
Constraint

Rahul Vaze

Tata Institute of Fundamental Research, Mumbai

(tifr

Joint work Jayakrishnan Nair- || T-Bombay

Scheduling 101

Job
arrivals

| B

Scheduling 101

Single server

Job
arrivals

| B

Scheduling 101

Arrive Depart

Job
arrivals

FIowtlme

(Delay)
Slngle server

Scheduling 101

Arrive Depart

Job
arrivals

FIowtlme

(Delay)
Slngle server

Obj: min total flow time

Z flow timej — /n(t)dt

Scheduling 101

Job
arrivals

(I (e

Single server

Obj: min total flow time

Z flow timej — /n(t)dt

n(t) number of outstanding jobs at time t

Arrive Depart

([

FIowtlme
(Delay)

Scheduling 101

Arrive Depart

Job
arrivals
I:l .:| ;=Iowtime>
(Delay)
Single server
Obj: min total flow time
, SRPT is optimal
Z flow time; = n(t)dt
1€Jobs

n(t) number of outstanding jobs at time t

Scheduling 101

Arrive Depart

Job
arrivals
I G
(Delay)
Single server
Obj: min total flow time
, SRPT is optimal
Z flow time; = n(t)dt
1€Jobs

n(t) number of outstanding jobs at time t

Scheduling 101

Arrive Depart

Job
arrivals
1] [-

Flowtime
(Delay)

Single server

Obj: min total flow time

SRPT is optimal
Z flow timej — /n(t)dt

min # of outstanding jobs

n(t) number of outstanding jobs at time t

Parallel Scheduling

Parallel Scheduling

1

packets

arrivals

N

Multiple Servers

Obj: min total flow time

/ n(t)dt

n(t) number of outstanding jobs at time t

Parallel Scheduling

1

packets

arrivals

N

Multiple Servers

Fully
Parallelizable Jobs

Obj: min total flow time

/ n(t)dt

n(t) number of outstanding jobs at time t

Parallel Scheduling

1 A

packets

arrivals

Per-Job speed

K
of servers

Fully

Multiple Servers Parallelizable Jobs

Obj: min total flow time

/ n(t)dt

n(t) number of outstanding jobs at time t

Parallel Scheduling

1 A

packets

arrivals

Per-Job speed
il il ki

K
;
of servers

Fully

Multiple Servers Parallelizable Jobs

Obj: min total flow time

/ n(t)dt

n(t) number of outstanding jobs at time t

Parallel Scheduling

1 A

packets

arrivals

Per-Job speed
il il ki

K
;
of servers

Fully

Multiple Servers Parallelizable Jobs

Obj: min total flow time SRPT is optimal

/ n(t)dt

n(t) number of outstanding jobs at time t

Parallel Scheduling

1
packets I

arrivals I Per-Job speed
o | b

K
[en :
of servers

Fully

Multiple Servers Parallelizable Jobs

Obj: min total flow time SRPT is optimal

/ n(t)dt

n(t) number of outstanding jobs at time t

Parallel Scheduling- Reality

1

packets

arrivals

N

Multiple Servers

Obj: min total flow time

/ n(t)dt

n(t) number of outstanding jobs at time t

Parallel Scheduling- Reality

1

packets

arrivals

N

Multiple Servers

Limited
Parallelizable Jobs

Obj: min total flow time

/ n(t)dt

n(t) number of outstanding jobs at time t

Parallel Scheduling- Reality

1 A

packets

arrivals

il
speed

Multiple Servers

of servers
Limited
Parallelizable Jobs

Obj: min total flow time

/ n(t)dt

n(t) number of outstanding jobs at time t

Parallel Scheduling- Reality

1 A

packets

arrivals

il
speed

Multiple Servers

of servers
Limited
Parallelizable Jobs

Obj: min total flow time

/ n(t)dt

n(t) number of outstanding jobs at time t

Parallel Scheduling- Reality

1 A

packets

arrivals

Ll
speed

Multiple Servers

of servers
Limited
Parallelizable Jobs

Obj: min total flow time

/ n(t)dt

n(t) number of outstanding jobs at time t

Parallel Scheduling- Reality

1 A

packets

arrivals

Ll
speed

Multiple Servers

of servers
Limited
Parallelizable Jobs

i ,) Diminishing returns by using more
Obj: min total flow time servers for the same job

/ n(t)dt

n(t) number of outstanding jobs at time t

Parallel Scheduling- Reality

1 A

packets

arrivals

Ll
speed

Multiple Servers

of servers
Limited
Parallelizable Jobs

i ,) Diminishing returns by using more
Obj: min total flow time servers for the same job

/ n(t)dt Open Question:
n(t) number of outstanding jobs at time t Optimal Scheduling

Prior Work

1 A

packets

arrivals

il
speed

o Ve o> 1

of servers

Limited
Parallelizable Jobs

>

Multiple Servers

Prior Work

1 A

packets

arrivals

i
speed

. Ve o> 1

of servers

Limited
Parallelizable Jobs

>

Multiple Servers

All jobs available at time O,

Prior Work

1 A

packets

arrivals

W
speed

o Ve o> 1

of servers

Limited
Parallelizable Jobs

>

Multiple Servers

All jobs available at time 0, Optimal Scheduling : heSRPT [Berg et al’ 20]

Prior Work

1

packets

arrivals

N

Multiple Servers

All jobs available at time 0, Optimal Scheduling : heSRPT [Berg et al’ 20]

Prior Work

1

packets

arrivals

N

Multiple Servers

All jobs available at time 0, Optimal Scheduling : heSRPT [Berg et al’ 20]

All jobs get non-zero speed, while shorter jobs get more speed

Prior Work

| Total Speed

packets

arrivals

N

Multiple Servers

>

<

All jobs available at time 0, Optimal Scheduling : heSRPT [Berg et al’ 20]

All jobs get non-zero speed, while shorter jobs get more speed

Prior Work

| Total Speed Speed Allocation

packets

arrivals

N

Multiple Servers

>

<

All jobs available at time 0, Optimal Scheduling : heSRPT [Berg et al’ 20]

All jobs get non-zero speed, while shorter jobs get more speed

Prior Work

| Total Speed Speed Allocation

packets

arrivals

N

Multiple Servers

>

<

All jobs available at time 0, Optimal Scheduling : heSRPT I[Berg et ar 20]

All jobs get non-zero speed, while shorter jobs get more speed

Prior Work

| Total Speed Speed Allocation

packets

arrivals

miLil

Multiple Servers

>

<

All jobs available at time 0, Optimal Scheduling : heSRPT I[Berg et ar 20]

All jobs get non-zero speed, while shorter jobs get more speed

Prior Work

| Total Speed Speed Allocation

packets

arrivals

miLil

Multiple Servers

>

<

All jobs available at time 0, Optimal Scheduling : heSRPT I[Berg et ar 20]

All jobs get non-zero speed, while shorter jobs get more speed

Prior Work

| Total Speed Speed Allocation

packets

arrivals

N

Multiple Servers

>

<

All jobs available at time 0, Optimal Scheduling : heSRPT [Berg et al’ 20]

All jobs get non-zero speed, while shorter jobs get more speed

ing i -\ (=17a) 1\ (=17e)
Among n(t) outstanding jobs si(t)K<(L> =) (@ 1) 7)

ith shortest job’s speed n(t) n(t)

Simple Algorithm EQUI

| Total Speed

packets

arrivals

miLil

Multiple Servers

A

<

Simple Algorithm EQUI

| Total Speed

packets

arrivals

N

Multiple Servers
All jobs available at time O,

A

Simple Algorithm EQUI

| Total Speed

packets

arrivals

N

Multiple Servers
All jobs available at time O,

A

Assign equal speed to all jobs

Simple Algorithm EQUI

Total Speed Speed Allocation
1 A
packets
arrivals y
Indepéndent
[l .:I K Of Joh} sizes

Multiple Servers

All jobs available at time O,

Assign equal speed to all jobs

Simple Algorithm EQUI

Total Speed Speed Allocation
1 A
packets
arrivals |
Indepéndent
I:l .:I K Of Joh} sizes

Multiple Servers

All jobs available at time O,

Assign equal speed to all jobs

Simple Algorithm EQUI

Total Speed Speed Allocation
1 A
packets
arrivals |
Indepéndent

Multiple Servers
All jobs available at time O,

<

Assign equal speed to all jobs

Simple Algorithm EQUI

Total Speed Speed Allocation
1 A
packets
arrivals |
Indepéndent

Multiple Servers
All jobs available at time O,

<

Assign equal speed to all jobs

Simple Algorithm EQUI

Total Speed Speed Allocation
1 A
packets
arrivals |
Indepéndent
I:l .:I K Of Joh} sizes
) |
|
A
Multiple Servers Per-Job
All jobs available at time 0, speed 1.1 / * a>1
Assign equal speed to all jobs # of servers

1 1
We show that Approximation Ratio of EQUI (2 — _) (1 _ (1))

(87
o

Simple Algorithm EQUI

Total Speed Speed Allocation
1 A
packets
arrivals y
Indepéndent
[l .:I K Of Joh} sizes
) |
|
A
All jobs available at time 0, speed 1.1 / *a>1
Assign equal speed to all jobs # of servers

1 1
We show that Approximation Ratio of EQUI (2 — _) (1 _ (1))

(87
o

EQUI is simpler than heSRPT to implement

Real Problem: Online

Real Problem: Online

1

packets

arrivals

N

Multiple Servers

Real Problem: Online

1

packets

arrivals

N

Multiple Servers

Jobs arrive over time, arbitrary time and sizes

Metric for Online Algorithms

Metric for Online Algorithms

Competitive ratio

Metric for Online Algorithms

Competitive ratio ratio of the cost of an online and the offline Opt algorithm

- UON (O‘)
TON — IlaxX
o vopT(0)

Worst Case Input

Metric for Online Algorithms

Competitive ratio ratio of the cost of an online and the offline Opt algorithm

- UON (O‘)
TON — IlaxX
o vopT(0)

Worst Case Input

Goal online algorithm with least CR

Prior Work : Online Case

1

packets

arrivals

N

Multiple Servers

Jobs arrive over time, arbitrary time and sizes

Prior Work : Online Case

1

packets

arrivals

N

Multiple Servers

Jobs arrive over time, arbitrary time and sizes

Not much is known, unless resource augmentation is provided

Prior Work : Online Case

1

packets

arrivals

N

Multiple Servers

Jobs arrive over time, arbitrary time and sizes

Not much is known, unless resource augmentation is provided
With resource augmentation an algorithm has more resources than OPT

Prior Work : Online Case

Total Speed
1 For OPT

packets

arrivals

N

Multiple Servers

A

Jobs arrive over time, arbitrary time and sizes

Not much is known, unless resource augmentation is provided
With resource augmentation an algorithm has more resources than OPT

Prior Work : Online Case

Total Speed Total Speed
1 For Online Alg For OPT

A
packets

arrivals

N

Multiple Servers

A

K(1+e¢)

Jobs arrive over time, arbitrary time and sizes

Not much is known, unless resource augmentation is provided
With resource augmentation an algorithm has more resources than OPT

Prior Work : Online Case

Total Speed Total Speed
1 For Online Alg For OPT

A
packets

arrivals

N

Multiple Servers

A

K(1+¢€)

Jobs arrive over time, arbitrary time and sizes

Not much is known, unless resource augmentation is provided
With resource augmentation an algorithm has more resources than OPT
With resource augmentation constant competitive algorithms are known [Edmonds et al]

Our Algorithm

| Total Speed

packets

arrivals

miLil

Multiple Servers

>

<

Our Algorithm LCFS-EQUI

| Total Speed

packets

arrivals

miLil

Multiple Servers

A

<

Our Algorithm LCFS-EQUI

| Total Speed

packets

arrivals

N

Multiple Servers

A

Process the 5 -fraction of the most recently arrived jobs

Our Algorithm LCFS-EQUI

| Total Speed

packets

arrivals

N

Multiple Servers

A

Process the 5 -fraction of the most recently arrived jobs
Assign equal speed to all jobs being processed

Our Algorithm LCFS-EQUI

| Total Speed Speed Allocation

packets

arrivals

N

Multiple Servers

A

Process the 5 -fraction of the most recently arrived jobs
Assign equal speed to all jobs being processed

Our Algorithm LCFS-EQUI

Total Speed Speed Allocation

1 A
packets
arrivals .

mil il k
K
B = 2/3 -Most
‘ Recently

Arrived jobs
Multiple Servers

Process the 5 -fraction of the most recently arrived jobs
Assign equal speed to all jobs being processed

Our Algorithm LCFS-EQUI

Total Speed Speed Allocation

1 A
packets
arrivals

mil il k
K
B = 2/3 -Most
‘ Recently

Arrived jobs
Multiple Servers

Process the 5 -fraction of the most recently arrived jobs
Assign equal speed to all jobs being processed

Our Algorithm LCFS-EQUI

Total Speed Speed Allocation

1 A
packets
arrivals

mil il k
K
B = 2/3 -Most
‘ Recently

Arrived jobs
Multiple Servers

Process the 5 -fraction of the most recently arrived jobs
Assign equal speed to all jobs being processed

Algorithm is non-clairvoyant : no information needed about remaining job size

Intuition LCFS-EQUI

| Total Speed Speed Allocation
packets I

arrivals

W e
)

Multiple Servers

>

2/3-Most
Recently
Arrived jobs

<

Intuition LCFS-EQUI

| Total Speed Speed Allocation
packets I

arrivals

W e
)

Multiple Servers

>

2/3-Most
Recently
Arrived jobs

<

SRPT- short jobs remain in system for short time

Intuition LCFS-EQUI

| Total Speed Speed Allocation
packets I

arrivals

W e
)

Multiple Servers

>

2/3-Most
Recently
Arrived jobs

<

SRPT- short jobs remain in system for short time

LCFS- w/o0 job size information, long jobs remain in system for long

Intuition LCFS-EQUI

| Total Speed Speed Allocation
packets I

arrivals

W e
)

Multiple Servers

>

2/3-Most
Recently
Arrived jobs

<

SRPT- short jobs remain in system for short time

LCFS- w/o0 job size information, long jobs remain in system for long
Technical - construction of potential (Lyapunov) function is easy

Intuition LCFS-EQUI

| Total Speed Speed Allocation
packets I

arrivals

W e
)

Multiple Servers

>

2/3-Most
Recently
Arrived jobs

<

SRPT- short jobs remain in system for short time

LCFS- w/o0 job size information, long jobs remain in system for long
Technical - construction of potential (Lyapunov) function is easy
EQUI : with equal speed, analysis is easy

Guarantee LCFS-EQUI

| Total Speed Speed Allocation
packets I

arrivals

W e
)

Multiple Servers

>

2/3-Most
Recently
Arrived jobs

<

Guarantee LCFS-EQUI

Total Speed Speed Allocation

>

packets
arrivals

2/3-Most
Recently
Arrived jobs

<

of servers

Guarantee LCFS-EQUI

Total Speed Speed Allocation
packets I

>

arrivals
|6 ’
K
I 2/3-Most
‘ Recently

Arrived jobs

Multiple Servers
Job

speed _ _ _
For a suitable choice of fraction (3

Competitive ratio is a constant that
L1/a 1 only depends on exponent
, >

>

of servers

General Problem

1

packets

arrivals

miLil
o

Unlimited # of Servers

General Problem

1

packets

arrivals

Variable
Speed
)

Unlimited # of Servers

General Problem

1 A

packets Per-Server

arrivals Power

Variable CONsumption
Speed

00
Server speed

Unlimited # of Servers

General Problem

1 A

packets Per-Server

arrivals Power

Speed

00
Server speed

Unlimited # of Servers

Obj: min total flow time

/ n(t)dt

n(t) number of outstanding jobs at time t

General Problem

1 A

packets Per-Server

arrivals Power

Variable Consumption
Speed
.& 00
>
Server speed

Unlimited # of Servers

Obj: min total flow time subj: sum-power constraint
across all servers
/n(t)dt P

n(t) number of outstanding jobs at time t

General Problem

1 A

packets Per-Server

arrivals Power

Variable COnsumption P(s(t)) =
Speed
.@OO >
Server speed

Unlimited # of Servers

Obj: min total flow time subj: sum-power constraint
across all servers
/n(t)dt P

n(t) number of outstanding jobs at time t Decision : speed of each job/server

Result - General Problem

1
packets I Per-Server

arrivals Power

[l .:| I Consumption P(s(t)) = s(t)”

A

I O
Server speed

Unlimited # of Servers

Result - General Problem

1
packets I Per-Server

arrivals Power

[l .:| I Consumption P(s(t)) = s(t)”

I 0
Server speed

Unlimited # of Servers

Competitive ratio is a constant that
only depends on exponent «

Conclusions

Conclusions

An online algorithm for an important job-scheduling problem

Conclusions

An online algorithm for an important job-scheduling problem

Fractional LCFS+Equal Speed algorithm is constant competitive

Conclusions

An online algorithm for an important job-scheduling problem
Fractional LCFS+Equal Speed algorithm is constant competitive

Past approaches needed resource augmentation

Conclusions

An online algorithm for an important job-scheduling problem
Fractional LCFS+Equal Speed algorithm is constant competitive

Past approaches needed resource augmentation

Open Questions

Conclusions

An online algorithm for an important job-scheduling problem
Fractional LCFS+Equal Speed algorithm is constant competitive

Past approaches needed resource augmentation

Open Questions

Competitive ratio of heSRPT algorithm (that is locally optimal) ?

Conclusions

An online algorithm for an important job-scheduling problem
Fractional LCFS+Equal Speed algorithm is constant competitive

Past approaches needed resource augmentation

Open Questions

Competitive ratio of heSRPT algorithm (that is locally optimal) ?

Lower Bound on the competitive ratio of any online algorithm?

