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SRPT is optimal
Z flow timej — /n(t)dt

min # of outstanding jobs

n(t) number of outstanding jobs at time t



Parallel Scheduling



Parallel Scheduling

1

packets

arrivals

N

Multiple Servers

Obj: min total flow time

/ n(t)dt

n(t) number of outstanding jobs at time t



Parallel Scheduling

1

packets

arrivals

N

Multiple Servers

Fully
Parallelizable Jobs

Obj: min total flow time

/ n(t)dt

n(t) number of outstanding jobs at time t



Parallel Scheduling

1 A

packets

arrivals

Per-Job speed

K
# of servers

Fully

Multiple Servers Parallelizable Jobs

Obj: min total flow time

/ n(t)dt

n(t) number of outstanding jobs at time t



Parallel Scheduling

1 A

packets

arrivals

Per-Job speed
il il ki

K
;
# of servers

Fully

Multiple Servers Parallelizable Jobs

Obj: min total flow time

/ n(t)dt

n(t) number of outstanding jobs at time t



Parallel Scheduling

1 A

packets

arrivals

Per-Job speed
il il ki

K
;
# of servers

Fully

Multiple Servers Parallelizable Jobs

Obj: min total flow time SRPT is optimal

/ n(t)dt

n(t) number of outstanding jobs at time t



Parallel Scheduling

1
packets I

arrivals I Per-Job speed
o | b

K
[en :
# of servers

Fully

Multiple Servers Parallelizable Jobs

Obj: min total flow time SRPT is optimal

/ n(t)dt

n(t) number of outstanding jobs at time t



Parallel Scheduling- Reality

1

packets

arrivals

N

Multiple Servers

Obj: min total flow time

/ n(t)dt

n(t) number of outstanding jobs at time t



Parallel Scheduling- Reality

1

packets

arrivals

N

Multiple Servers

Limited
Parallelizable Jobs

Obj: min total flow time

/ n(t)dt

n(t) number of outstanding jobs at time t



Parallel Scheduling- Reality

1 A

packets

arrivals

il
speed

Multiple Servers

# of servers
Limited
Parallelizable Jobs

Obj: min total flow time

/ n(t)dt

n(t) number of outstanding jobs at time t



Parallel Scheduling- Reality

1 A

packets

arrivals

il
speed

Multiple Servers

# of servers
Limited
Parallelizable Jobs

Obj: min total flow time

/ n(t)dt

n(t) number of outstanding jobs at time t



Parallel Scheduling- Reality

1 A

packets

arrivals

Ll
speed

Multiple Servers

# of servers
Limited
Parallelizable Jobs

Obj: min total flow time

/ n(t)dt

n(t) number of outstanding jobs at time t



Parallel Scheduling- Reality

1 A

packets

arrivals

Ll
speed

Multiple Servers

# of servers
Limited
Parallelizable Jobs

i , ) Diminishing returns by using more
Obj: min total flow time servers for the same job

/ n(t)dt

n(t) number of outstanding jobs at time t



Parallel Scheduling- Reality

1 A

packets

arrivals

Ll
speed

Multiple Servers

# of servers
Limited
Parallelizable Jobs

i , ) Diminishing returns by using more
Obj: min total flow time servers for the same job

/ n(t)dt Open Question:
n(t) number of outstanding jobs at time t Optimal Scheduling
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All jobs available at time 0, Optimal Scheduling : heSRPT [Berg et al’ 20]

All jobs get non-zero speed, while shorter jobs get more speed
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We show that Approximation Ratio of EQUI (2 — _) (1 _ (1))
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EQUI is simpler than heSRPT to implement
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TON — IlaxX
o vopT(0)

Worst Case Input

Goal  online algorithm with least CR
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Total Speed Total Speed
1 For Online Alg For OPT
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packets
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N

Multiple Servers

A

K(1+¢€)

Jobs arrive over time, arbitrary time and sizes

Not much is known, unless resource augmentation is provided
With resource augmentation an algorithm has more resources than OPT
With resource augmentation constant competitive algorithms are known  [Edmonds et al]
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Arrived jobs
Multiple Servers

Process the 5 -fraction of the most recently arrived jobs
Assign equal speed to all jobs being processed

Algorithm is non-clairvoyant : no information needed about remaining job size
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SRPT- short jobs remain in system for short time

LCFS- w/o0 job size information, long jobs remain in system for long
Technical - construction of potential (Lyapunov) function is easy
EQUI : with equal speed, analysis is easy
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Obj: min total flow time subj: sum-power constraint
across all servers
/n(t)dt P

n(t) number of outstanding jobs at time t Decision : speed of each job/server
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An online algorithm for an important job-scheduling problem
Fractional LCFS+Equal Speed algorithm is constant competitive

Past approaches needed resource augmentation

Open Questions

Competitive ratio of heSRPT algorithm (that is locally optimal) ?

Lower Bound on the competitive ratio of any online algorithm?



