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1. INTRODUCTION

Minimizing the energy consumption of embedded systems
with real-time execution constraints is becoming more and
more important. More functionalities and better perfor-
mance/cost tradeoffs are expected from such systems be-
cause of the increased use of real-time applications and the
fact that batteries are becoming standard power supplies.
Dynamically changing the speed of the processor is a com-
mon and efficient way to reduce energy consumption and
remarkable gains can be obtained when considering cache-
intensive and/or CPU-bound applications as the CPU en-
ergy consumption may dominate the overall energy con-
sumption. In fact, this is the reason why modern processors
are equipped with Dynamic Voltage and Frequency Scaling
(DVFS) technology [7]. In the deterministic case where job
sizes and arrival times are known, a vast literature addressed
the problem of designing both off-line and on-line algorithms
to compute speed profiles that minimize the energy con-
sumption subject to hard real-time constraints (deadlines)
on job execution times; e.g., [5]. In a stochastic environ-
ment where only statistical information is available about
job sizes and arrival times, it turns out that combining hard
deadlines and energy minimization via DVFS-based tech-
niques is much more difficult. In fact, forcing hard deadlines
requires to be very conservative, i.e., to consider the worst
cases. Matter of fact, existing approaches work within a
finite number of jobs |6}, |3].

The approach followed in this paper circumvents the diffi-
culties described above by replacing the hard real-time con-
straints, i.e., jobs have hard deadlines that must be satisfied,
by soft real-time constraints, i.e., jobs may miss their dead-
lines, at some cost. While the hard deadline of a job must
be known at the job arrival, soft deadlines allow for a dif-
ferent information structure: here, only the deadline distri-
bution is known at the job arrival. In this paper, we further
assume that jobs missing their deadlines become obsolete
and are dropped. Obsolescence is often found in real-time
systems where the information carried by jobs may not be
valid any longer after their deadline as it will be replaced by
fresher input coming from other jobs. Therefore, obsolete
jobs become useless and can get discarded from the queue.
Dropping obsolete jobs can also model impatient customers:
customers wait for service for some time (deadline) and quit
(are dropped) if not served before that time. We formulate
this problem as an MDP in continuous time where the state
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is the number of jobs in the system and the action is the
processor speed. Our main result, Theorem [I| shows the
existence of an optimal speed profile that is increasing in
the number of jobs in the system and upper bounded by
some constant. Surprisingly, our bound does not depend
on the deadlines and arrival rates. In addition, it yields a
simple approximation for the optimal policy and several nu-
merical tests show that such approximation is accurate in
heavy-traffic conditions.

2. METHODOLOGY AND MAIN RESULT

The system described here is a model for the dynamics
of a real-time device composed of a single processor where
incoming jobs need to be executed under a constraint on the
amount of time that they spend in the system.

Processor. This is a DVFS processor whose speed can con-
tinuously vary in the interval [0, Smax]. We consider that
speed changes are immediate and induce no energy cost.
When the processor works at speed s, it processes s units of
work per second while its power dissipation is w(s) watts.
We require that w(s) is continuous, increasing and strictly
convex in the speed s.

Jobs. They form a stochastic point process, with Poisson ar-
rivals with rate A, i.i.d. deadlines exponentially distributed
with rate 6 and i.i.d. sizes exponentially distributed with
rate p. Without loss of generality, we assume that p = 1.
Dynamics. At any point in time ¢, the processor chooses its
speed s(t) and executes one of the jobs in its backlog queue.
Now, three events can happen in continuous time: i) new
job may join the queue, ii) the active job is completed be-
fore its deadline and leaves the system, iii) one job (active or
inactive) reaches its deadline and is removed from the queue
paying an immediate cost equal to C'.

Cost Function. If we denote by My the number of missed
deadlines in the time interval [0, T, the objective of this pa-
per is to study the speed profile s(t) of the processor that
minimizes the long-run average cost given by the missed
deadlines plus power consumption, say J. Specifically:

J = lim sup (oMT + /OT w(s(?)) dt> ‘

T— o0

2.1 Markov Decision Process

We formulate the problem of interest as an MDP. The
state space is N and a state represents the number of jobs
in the system. The action space is [0, Smax], i.€., the set of
available speeds for the DVFS processor. Let 0 = (0;)ien
denote a stationary and deterministic speed policy adopted



by the processor, i.e., 0; € [0, Smax| is the speed used in
state 7. It is well known that focusing on stationary and
deterministic policies can be done with no loss of optimality
in our case [4, Theorem 5.9]. Under the policy o = (0;):en,
for 4,7 € N, the transition rates are given in Figure [T}

A

(i —+ 1)5 + 0it1
Figure 1: Markov chain diagram under policy o.

By the ergodicity of the Markov chain X under all poli-
cies o, the long-run cost J is equal to the long-run expected
cost and it is independent of the initial state. Letting E?
denote the expectation given a speed policy o, we have

T
J = J(o) :==lim supl/ E%¢(X°(t),0)dt.
T — o0 T 0

In this equation, the immediate cost function ¢(-,-) is the
expected cost incurred by the system at time ¢t. It only
depends on the current state and the current speed. Condi-
tional on the state (X7 (t) = i), the obsolescence rate is d.
Thus, the expected cost is: ¢(i,0) := Cid + w(o;). Station-
ary policies that minimize J(o) are optimal speed policies
for the model. In particular, they are also optimal over all
policies (history dependent and randomized) [4, Theorem
5.9] . Also, our MDP satisfies all the conditions given in [4}
Theorem 5.9] to assert the existence of an optimal station-
ary deterministic policy ¢* and an optimality equation of
the form
J=J(o") = sfin (i, s) + Z R (§)qi;(s), Vi € N (1)

J

where h* is a real function defined on N, usually referred to
as bias of the optimal policy.

2.2 Main result

The goal of this paper is to investigate structural proper-
ties on ¢* and J*. First, let us define B as

B := argmin (w(s)+ C(X— pus)). (2)
seRTU{+oo}

Then, our main result is the following.

THEOREM 1. There exists a deterministic optimal policy
" = (0] )ien that is increasing in i and upper bounded by B.

The optimal speed policy of the processor is always bounded
by a finite constant, namely min(B, Smax). We remark that
B is independent of the arrival rate, and the deadline dis-
tribution. This is both surprising and helpful in practice.
Indeed, if B is finite, one can set a priori the maximal speed
of the processor to Smax := B. This guarantees that in most
cases, no cost reduction would be possible by using a more
powerful processor. If the parameters and the power dissi-
pation w were related to units of work instead of units of
time, B would also be independent of u and therefore of all
parameters.

Underlying the proof of our main result, there are some
technical challenges that we now discuss. The proposed
MDP satisfies the regularity assumptions (stability, unichain)
needed to establish an optimality equation as described in [4].
However, this is not enough to show structural properties of
the optimal policy. In fact, the classical approach to do this
is to uniformize the MDP and to investigate the properties
of the corresponding discrete time value iteration operator.
Unfortunately, this is not possible in our case because the
transition rates are unbounded. To uniformize the MDP,
a typical approach consists of truncating the state space.
However, a naive truncation will not help here because the
truncation barrier has a strong impact on the structure of
the optimal policy in the sense that it would not preserve
any monotonicity property that it may have without trun-
cation. Instead, we use the technique proposed by Blok and
Spieksma in [2|, which smoothly scales down the upward
rates of the truncated system as a function of the size of its
state space. This technique has been already used, e.g. [1],
though on discounted costs. Here, we use the same trunca-
tion technique but we apply it to the average cost. In our
specific case, the convergence to the infinite system will be
guaranteed by the monotone convergence theorem.
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