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With the rapid development of information technology,
modern network systems are becoming increasingly com-
plex and are increasingly vulnerable to attacks such as Dis-
tributed Denial-of-Service (DDoS) attack. However, exist-
ing network control algorithms either require full observabil-
ity and/or controllability for all nodes [2, 9, 1, 4, 6], or the
network dynamics to be time-invariant and stochastic [7, 3,
8, 5]. In this paper, we aim to develop a new algorithm that
can stabilize networks with unobservable and uncontrollable
nodes under adversarial dynamics (i.e., external arrivals and
actions of malicious nodes).

We consider a multi-hop network with N nodes and de-
note the set of nodes by N . The nodes are classified into two
types: the set of accessible nodes A and the set of malicious
nodes M. The network has K classes of data and the data
of class k is destined for sink dk. The set of data classes is
denoted by K. The link capacity between node i and j is
Cij . We assume that time is slotted and the time horizon is
T .

At the beginning of time slot t, a node i ∈ N has Qik(t)
buffered packets of class k and receives aik(t) external pack-
ets of class k, which can be non-stochastic and even mali-
cious: the adversary first observes the history, including the
past queue backlogs and transmissions, up to time t−1, and
then decides on aik(t) for each node. For an accessible node
i ∈ A, we denote by fijk(t) the number of packets of class k
to be transmitted to a neighbor j as decided by the network
controller. Note that the network controller is only capa-
ble of controlling the accessible nodes A. The policy taken
by the network controller can be characterized by a set of
routing action sequences π =

{
fijk(t)

}
i∈A,j∈N ,k∈K,06t6T−1

.

For a malicious node i ∈ M, the network controller cannot
directly observe Qik(t) or implement control policies. In-

stead, the network controller only has an estimate Q̂ik(t) of
queue backlog Qik(t) for t ∈ Γi. In addition to not being
observable, malicious nodes are controlled by an adversary.
The actions taken by the adversary can be a function of the
history up to time t − 1. Our goal is to determine a policy
π that stabilizes the queues for all nodes N only using spo-
radic (and possibly erroneous) estimates of the state (queue
backlogs) of the malicious nodes M.

We focus on the rate stability of the queue backlogs for
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all nodes N , which is defined as follows.

Definition 1. A network is rate stable if

lim
T→∞

∑
i∈N ,k∈KQik(T )

T
= 0.

To characterize the power of the adversary, we use the con-
cept of maliciousness metrics, which place constraints on the
sequence of possible network events

{
a(t),µ(t)

}
06t6T−1

.

Existing maliciousness metrics include the W constraint [2]
and the VT constraint [4]. We propose a more relaxed mali-
ciousness metric called the QT constraint.

Definition 2. A network event sequence is QT -constrained
if under this network event sequence, the following holds

min
π∈

∏ ∑
i∈N ,k∈K

Qπik(T ) 6 QT .

We then define the maliciousness metrics for network dy-
namics as follows.

Definition 3. A network is said to haveW/VT /QT -constrained
dynamics if all generated network event sequences areW/VT /QT -
constrained, respectively.

We introduce the MWUM algorithm. The core idea be-
hind our approach is to “track” the state of the malicious
nodes as well as the adversarial dynamics, and then make
decisions based on the tracked information. We construct an
“imaginary” network that shares the same topology and ex-
ternal arrivals as the real network, except that in the imagi-
nary network, all nodes are fully observable and controllable.
For an accessible node i ∈ A in the imaginary network, we
force its queue backlog Qik to always be the same as that
of the real system. For a malicious node i ∈ M, its queue
backlog may differ between the two networks, and we denote
by Qik and Xik the queue backlogs of class k at node i in
the real network and the imaginary network, respectively.
We define the gap between Qik and Xik by Yik , Qik−Xik
and aim at stabilizing Qik for i ∈ A, Xik and Yik for i ∈M,
together.

For each time slot, the network controller observes the
queue backlogs of all accessible nodes i ∈ A. When t ∈
Γi, the network controller obtains an estimate Q̂ik(t) of the
queue backlog Qik(t) for the malicious node i and updates

the estimate of Yik(t) as Ŷik(t) = Q̂ik(t)−Xik(t). When t 6∈
Γi, Ŷik(t) remains unchanged. The network controller then
solves the optimization problem of (1) and applies fM (t)
to the accessible nodes in the real network. The network



fM (t), gM (t) = argmin
06fijk,gijk6Cij

∑
i∈A,k∈K

Qik(t)

[∑
j∈A

fjik −
∑
j∈N

fijk

]
+

∑
i∈M,k∈K

Xik(t)

[∑
j∈A

fjik +
∑
j∈M

gjik −
∑
j∈N

gijk

]
−

∑
i∈M,k∈K

max{Ŷik(t), 0} ·

[ ∑
j∈M

gjik −min

{∑
j∈N

gijk, Xik(t) + aik(t)

}]
. (1)

controller uses both fM (t) and gM (t) to update Xik(t) for
all malicious nodes i ∈M.

For a malicious node i ∈M, data class k ∈ K and t ∈ Γi,
we define the error as εik(t) , Q̂ik(t) − Qik(t). We define
L(t) to be the maximum delay in observations at t, i.e.,
maxi∈M,k∈K t − τi(t), where τi(t) denotes the most recent
time when an estimate of node i is made. We show that

Theorem 1. A network with QT -constrained dynamics
is rate stable under MWUM if QT = o(T ),

∑T−1
t=0 L(t)/T =

o(T ), and
∣∣εik(t)

∣∣ = o(t) for each i ∈M and k ∈ K.

By Definition 2, when QT = Ω(T ), the adversary might
implement a sequence of

{
a(t),µ(t)

}
06t6T−1

which cannot

be stabilized by any policy. However, as long as QT = o(T ),
we have shown that MWUM could stabilize the network.
Therefore, for a network with QT -constrained dynamics,
MWUM is a throughput-optimal algorithm.

We implement MWUM in a 12-node network, as in Figure
1. Node 2, 3, 4 and 6 are unobservable and malicious, while
the rest are accessible. All links have the capacity of 5.

Figure 1: 12-node network model.

At each time slot, an adversary injects at each time slot
a′ = 2 packets into the network through node 1, 4 or 10. In
an attempt to destabilize the network, the adversary chooses
to inject the a′ packets into the node with the largest queue.
Similarly, node 4 and 6 apply the “join the longest queue”
(JLQ) policy that transmits 5 packets to the neighboring
node with the larger queue size and transmits nothing to
the other neighboring node. JLQ, in contrast to the stabi-
lizing “join the shortest queue” (JSQ) policy, is adversarial
since the node with the larger queue is more heavily loaded
and hence, easier to destabilize. Node 3 simply transmits
5 packets to node 7 at each time slot. Node 2 transmits 5
packets to node 3 for the first T/2 time slots, but starting
at T/2, it only transmits 1 packet to node 3.

The simulation results are shown in Figure 2, from which
we can see that directly applying the traditional MaxWeight
algorithm cannot stabilize the network, while MWUM sta-
bilizes the network.
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