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ABSTRACT
We study a learning-based hierarchical scheduling frame-
work in support of network slicing for cellular networks.
This addresses settings where users and/or service classes
are grouped into slices, and resources are allocated hier-
archically. The hierarchy is implemented by combining a
slice-level scheduler which allocates resources to slices, and
flow-level schedulers within slices which opportunistically al-
locate resources to users/services. Optimizing the slice-level
scheduler to maximize system utility is typically hard due to
underlying heterogeneity and uncertainty in user channels
and performance requirements. We address this by refor-
mulating the problem as an online black-box optimization
where slice-level schedulers (parameterized by a weight vec-
tor) combined with flow-level schedulers result in user/service
level stochastic rewards representing performance fitness;
the goal is to learn the best weight vector. We develop
a bandit algorithm based on queueing cycles by building
on Hierarchical Optimistic Optimization (HOO). The al-
gorithm guides the system to improve the choice of the
weight vector based on observed rewards. Theoretical anal-
ysis of our algorithm shows a sub-linear regret with re-
spect to an omniscient genie. Finally through simulations,
we show that the algorithm adaptively learns the optimal
weight vectors when combined with opportunistic and/or
utility-maximizing flow-level schedulers.
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1. INTRODUCTION
The increasing complexity of cellular wireless networks

has led to network slicing as a popular paradigm for re-
source sharing. Network slicing is a coarse resource allo-
cation mechanism that partitions traffic flows into groups
(slices), and allocates network resources (e.g. spectrum) to
each of these slices. Network slicing operates alongside a
finer-grain resource manager (flow-level scheduler) that al-
locates resources among the flows within each slice. Slicing
can be used for various reasons including isolating groups
from each other in the presence of traffic load fluctuations,
or grouping flows with similar Quality of Service (QoS) re-
quirements, so that flow-level schedulers can operate across
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groups of flows with roughly homogeneous requirements.
In this paper, we adopt a hierarchical online learning ap-

proach to network slicing that is driven by user-feedback
in the form of rewards. Given a collection of slices (each
slice defined through a collection of flows, and with QoS
and spectrum-share requirements), we develop a slice-level
scheduler (top of the hierarchy) that dynamically allocates
resources to each slice based on the observed rewards from
mobile users within each slice. This slice-level scheduler al-
locates resources by dynamically selecting weights for each
slice, with these weights specifying a share of spectrum for
each slice through an allocation mechanism such as a Gener-
alized Processor Sharing (GPS) scheduler. Further, within
each slice, a flow-level scheduler (such as the Max-Weight
rule) allocates channel resources to individual flows. Thus,
the reward obtained from a slicing allocation depends both
on the sharing of spectrum for each slice and the individual
allocations within each slice. By treating the transformation
from weight selection to reward accumulation as a blackbox
function, we build on bandit-based blackbox optimization
methods to develop adaptive slicing mechanisms.

2. PROBLEM FORMULATION
We consider a queueing system with a single server (base

station) serving a set of users which are further grouped into
slices. Each user is associated with a stochastic packet ar-
rival and wireless channel process. We study a hierarchical
scheduling framework in which a slice-level scheduler is pa-
rameterized by a weight vector w and flow-level schedulers
are pre-selected for each slice. For any choice of the weight
vector w, the system observes a mean reward rate associ-
ated with users’ performance/utility — this mapping from
weights to reward rates is represented as a function f(w).
See Figure 1 for an overview.

Due to complexity and dynamics of such systems, f(w) is
analytically hard to optimize and the problem can be better
studied as a blackbox optimization. Using a multi-armed
bandit framework, where the (continuous-valued) weights
correspond to the arms of the bandit and the corresponding
arm-rewards accrue from (noisy) user feedback, we develop
an online algorithm that explores the choice of weights to
adaptively optimize the blackbox function.

3. THE CHOOC ALGORITHM
We propose Cycle-Based HOO with Clipping (CHOOC)

algorithm, a modified Hierarchical Optimistic Optimization
(HOO) algorithm [1] to adaptively learn the best weight vec-
tor. CHOOC operates at the time-scale of queueing cycles
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Figure 1: Illustration of a hierarchical scheduler
(left) and the formulation as a blackbox optimiza-
tion problem (right).

(idle + busy period) — the queue dynamics and rewards
are conditionally independent (given w) over cycles under
proper assumptions, which is essential for the comparison
of different arms. A single exploration sample of f(·) corre-
sponds to selecting a weight vector w, using these weights
to allocate spectrum resources (to slices) via the associated
slice-level scheduler, in turn allow predetermined flow-level
schedulers to assign resources to individual users, and fi-
nally collecting the aggregate reward from active users over
a queueing cycle. The weight selection mechanism under-
lying CHOOC involves partitioning the weight space into
a binary tree, refining the estimation of f(w) correspond-
ing to each partition through collected samples, and choos-
ing weights from partitions with the best estimated perfor-
mance/rewards.

From a technical perspective, as compared to HOO we ad-
dress two additional challenges: (i) Ratio of Rewards: Since
the length of queueing cycles are random and depend on
the action (the weight vector w), our reward rate is de-
scribed through a ratio of two random summations — re-
ward accrued over cycles divided by the cumulative cycle
lengths — thus, we need to control the associated uncer-
tainty which does not directly fit the standard HOO model
(because ratios of sums differs from the sum of ratios). (ii)
Sub-Exponential Rewards and Unstable Queues: Unlike the
sub-Gaussian reward setting of HOO, queueing cycle lengths
are either sub-exponential (if w results in stable queues), or
can be infinite if the queues become unstable. Thus, we need
to clip cycles (i.e. truncate overly long cycles by dropping
packets), but must do so with a negligible rate of clipping
(to minimize drops). By properly addressing these issues,
our theoretical analysis recovers a sub-linear regret, which
is of the same order as HOO. See [2] for a detailed algorithm
description and full theoretical results.

4. PERFORMANCE EVALUATION
We simulate our algorithm in various wireless settings,

which include different slice partitions and and heteroge-
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Figure 2: Simulation results on experiments in Sec-
tion 4.

neous performance metrics of user packets. The experiments
show our algorithm is able to locate the optimal weight after
a reasonable amount of exploration.

Figure 2 exhibits a representative simulation result dis-
playing the convergence behavior of the CHOOC algorithm.
For this experiment, we simulated a simplified cellular wire-
less base station comprising 2 slices where each slice has 6
heterogeneous users (in terms of arrival and service rates).
For the first slice, the reward of each transmitted packet is
given by (1 − delay ∗ 0.1)+; while for the second slice, the
reward of each packet equals 1{delay<7}. The cumulative re-
ward is defined as the sum of packet rewards over time.

The top-left panel in Figure 2 shows the (Monte Carlo-
simulated) reward rate (i.e., f(w)). The optimum is roughly
w1 = 0.42. We then run CHOOC for 10k cycles. In the bot-
tom panels of Figure 2, we show how the “explored tree” of
CHOOC evolves from cycle index n = 2k to 10k, where each
dot in the scatter plots represents a weight selection at the
corresponding depth. As expected, the tree grows deeper
around the optimum, implying that CHOOC is focusing on
exploring near-optimal weights. Convergence is further ver-
ified by the time-vs-regret plot, which shows a sub-linear
growth.

See [2] for complete experiment results and additional in-
sights/conclusions.
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