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ABSTRACT
In this paper we present results for bivariate exponential
distributions which are represented by phase type distribu-
tions. The paper extends results from previous publications
[3, 11] on this topic by introducing new representations that
require a smaller number of phases to reach some correlation
coefficient and introduces different ways to describe correla-
tion between exponentially distributed random variables.

1. INTRODUCTION
Phase type distributions (PHDs) are used to describe non-

exponential distributions in stochastic models that can be
mapped on Continuous Time Markov Chains (CTMCs) and
solved by simulation or, preferably, by numerical techniques
[15, 16]. A large number of papers on PHDs, their proper-
ties, the estimation of parameters, and their application in
stochastic modeling exists [1, 6]. PHDs describe uncorre-
lated event streams whereas their extension Markovian Ar-
rival Processes (MAPs) are applied to model autocorrelated
sequences. In many stochastic models, correlation does not
only occur between the events of one stream, instead the
times of different events are correlated. E.g., inter-arrival
times and service times in a queuing system are correlated
[7], failures times of components are correlated [9] or pro-
cessing times of parallel jobs are correlated [14]. In these
cases, correlation between different PHDs has to be mod-
eled. To describe the required correlation, PHDs that run
in parallel or sequentially have to be defined to realize cor-
relation of processing times of parallel jobs or of sequential
steps of one job.

In this paper, we consider correlated exponential distribu-
tions which are the base for PHDs and MAPs. Results from
two previous papers on bivariate exponential distributions
[3, 11] are extended. New representations for bivariate ex-
ponential distributions described by PHDs are defined that
require fewer states to represent a given coefficient of corre-
lation than the technqiues presented in [3, 11].

The paper is structured as follows. In the next section
PHDs and phase type representations of exponential dis-
tributions are introduced. Section 3 reviews related work.
Then, a step-wise approach to generate phase type repre-
sentations of exponential distributions with an increasing
number of phases is defined. The following two sections de-
scribe how a maximal and minimal coefficient of correlation
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can be achieved by phase type representations of exponen-
tial distributions. Then a small example is presented and
the paper is concluded. A more detailed version of this pa-
per including the proofs can be found online [4].

2. BASIC MODEL
A PHD is described by an initial distribution vector π and

a sub-generator D with only transient states [6, 15]. Conse-
quently, the real part of all eigenvalues of matrix D is nega-
tive implying that the matrix is non-singular and the inverse
matrix is non-positive. Furthermore, we assume π I1 = 1 and
d = −D I1 where I1 is a column vector of all 1s. Let n be the
number of phases of the PHD.

For some PHD (π,D), matrix M = −D−1 ≥ 0 exists,
M(i, j) is the mean time the PHD stays in state j before
absorption if the current state is i and m = M I1 is a vec-
tor containing the first moments of the time to absorption
conditioned on the initial state. Let ψ be the vector of exit
probabilities from the states, containing the probabilities
that the PHD is left from a specific state. The vector can
be computed as follows [13, Parag. 3.5].

B =M diag (d) and ψ = πB. (1)

Another quantity which is of interest is the expected absorp-
tion time conditioned on the exit state, i.e., the last transient
state before absorption. Let a be the vector containing the
conditional absorption times. The vector can be computed
as

a(i) =
1

ψ(i)
πMB(:, i) for ψ(i) > 0 (2)

where B(:, i) is the ith column of matrix B.
We consider Acyclic Phase Type Distributions (APHDs)

which are described by the initial distribution π and a ma-
trix D that can be permuted to an upper triangular matrix.
In contrast to general PHDs, APHDs can be transformed
to some canonical form by equivalence transformations. We
consider in the following two canonical forms [8]. The first
is given by

π = (π1, . . . , πn) ,

D =



−µ1 µ1 0 · · · 0
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(3)



with µ1 ≤ µ2 ≤ . . . ≤ µn. The second canonical form equals

π = (1, 0, . . . , 0) ,

D =



−µ1 µ1,2 0 · · · 0

0
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. . .
. . .
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...

...
. . .

. . .
...

...
...

... −µn−1 µn−1,n

0 · · · · · · 0 −µn


(4)

where µ1 ≥ µ2 ≥ . . . ≥ µn and µi ≥ µi,i+1. The Laplace
transform of the distribution described by the first or second
canonical form is given by

L1(s) =
n∑

i=1

πi

n∏
j=i

µj

µj+s
and

L2(s) =
n∑

i=1

(
1− µi,i+1

µi

)(i−1∏
j=1

µj,j+1

µj

)(
i∏

k=1

µk
µk+s

)
(5)

where µn,n+1 = 0. To represent some exponential distribu-
tion with rate λ by an APHD the Laplace transform of the
corresponding representation has to equal λ/(λ+s). We de-
note a representation as normalized if λ = 1 which implies
E(X) = 1. By multiplication of matrix D with λ−1 > 0 we
obtain a normalized representation. Thus, it is sufficient to
consider only normalized representations in the sequel.

If we assume that a PHD is immediately started again
with vector π after an absorption, we obtain the stationary
vector at random times ϕ as the solution of the following
set of equations.

ϕ (D + dπ) = 0 and ϕ I1 = 1. (6)

For some random variable X we denote by (πX ,DX) a
PHD representation. If two PHDs (πX ,DX) and (π′

X ,D′
X)

are different representations for the same random variable
we use the notation (πX ,DX) ∼ (π′

X ,D′
X). For X with

representation (πX ,DX), the relations E(X) = (ϕXdX)−1 =
πXmX hold.
Correlated Random Variables
For two random variables X and Y , the correlation and
coefficient of correlation are defined as

CX,Y = E(XY )− E(X)E(Y ) and ρX,Y =
CX,Y

σXσY
(7)

where σX , σY are the standard deviations. For the exponen-
tial distribution σX = E(X) which implies for two normal-
ized representations ρX,Y = E(XY ) − 1. Let Y and X be
two exponentially distributed random variables. We assume
that (πX ,DX) and (πY ,DY ) are APHDs representing nor-
malized random variables. By multiplying the matrices DX

and DY with λX and λY , respectively, the rates of the dis-
tributions can be shifted.

We describe two different possibilities to combine PHDs.
The bivariate representation used in [3, 11] can be inter-
preted as a sequential composition of PHDs. Let (πX ,DX)
and (πY ,DY ) be two PHDs of order nX and nY describing
random variables X and Y , then the following absorbing
CTMC defines the sequential combination.

(πX ,0, 0) ,

 DX diag(dX)ΨX,Y 0
0 DY dY

0 0 0

 (8)

whereΨX,Y is a non-negative nX×nY matrix withΨX,Y I1 =
I1 and ψXΨX,Y = πY . The time of the transition from the
first block into the second block determines the value of the
first random variable, the exit state from where the first
block is left defines the initial distribution for the second
random variable, and the time of the transition into the ab-
sorbing state determines the sum of both random variables
and thus the value of the second random variable. The co-
efficient of correlation of X and Y is then given by

ρX,Y =(
nX∑
i=1

ψX (i)aX (i)
nY∑
j=1

ΨX,Y (i,j)mY (j)

)
−E(X)E(Y )

σXσY

(9)

The second composition is a parallel composition. In this
case, two (or more) PHDs are started jointly. The com-
bined PHDs built again a PHD described by the following
absorbing CTMC.

(πX,Y ,0,0, 0) ,
DX ⊕DY dX ⊗ InY InX ⊗ dY 0

0 DY 0 dY

0 0 DX dX

0 0 0 0

 (10)

πX,Y is a probability distribution which observes

πX,Y (InX ⊗ I1nY ) = πX and πX,Y ( I1nX ⊗ InY ) = πY ,

where In is the n×n identity matrix and I1n a column vector
of 1s of length n. The time of a transition from the first
into the second block describes the value of X if it is smaller
than the value of Y , a transition from the first into the third
block describes the value of Y if it is smaller than X and a
transition into the absorbing state defines the maximum of
both random variables. The coefficient of correlation equals

ρX,Y =(
nX∑
i=1

nY∑
j=1

πX,Y ((i−1)∗nY +j)mX (i)mY (j)

)
−E(X)E(Y )

σXσY

(11)

Obviously, the coefficients of correlation that can be achieved
for two random variables X and Y that are composed se-
quentially or in parallel depend on the choice of matrixΨX,Y

and vector πX,Y , respectively. Additionally, the value de-
pends also on the representation of the random variables
by PHDs. Finding an appropriate representation to reach
a given coefficient of correlation with a small dimension of
the PHDs is a challenging problem that will be investigated
in this paper (for further details see [4]).

3. RELATED WORK
Based on the model for multivariate PHDs, [3] developed

a model of bivariate exponential PHDs using the repre-
sentation (8). To generate correlated exponential distribu-
tions, matrix DX is of the second canonical form and DY

of the first canonical form. Furthermore, nX = nY and
µi = i (i = 1, . . . , ni). In this case the minimal coefficient

of correlation ρ−(n) is reached for Ψ−
X,Y = I and the max-

imal coefficient of correlation ρ+(n) is achieved for matrix
Ψ+

X,Y (i, j) = 1 if j = nX − i + 1 and 0 otherwise. For
positive correlation, the maximal coefficient of correlation
for order n PHDs equals then ρ+(n) = 1 − 1

n

∑n
i=1

1
i
and

the minimal coefficient of correlation equals 1 −
∑n

i=1
1
i2
.



Thus, limn→∞ ρ+(n) = 1 and limn→∞ ρ−(n) = 1 − π2

6
, the

minimal correlation coefficient for bivariate exponential dis-
tributions. Any coefficient of correlation between ρ−(n) and
ρ+(n) can be reached with two APHDs of order n by mixing
Ψ−

X,Y and Ψ+
X,Y [3].

The results of [3] are extended in [11]. The APHDs used
in [3] to represent exponential distributions according to (8)
have the following properties.

i) DX I1 = − I1,

ii) I1TDY = − I1T ,

iii) I1TDX ≤ 0,

iv) I1TΨX,Y = I1T .

[11] shows that among all phase type representations of a
fixed order n that observe i)-iv), the representations pro-
posed in [3] have the smallest, respectively, largest coefficient
of correlation. However, the properties are not mandatory
to represent a normalized exponential distribution by a PHD
or an APHD. In this paper, we show that relaxing some of
the properties allows us to generate representations which
can be used to reach a larger coefficient of variation with a
given number of phases.

4. CONSECUTIVE GENERATION
To represent an exponential distribution by an APHD in

canonical form, the Laplace transforms of both have to co-
incide. The following theorem shows that this determines
the rate of the first phase of an APHD in the first canonical
form.

Theorem 1. If a normalized exponential distribution is
represented by an APHD in canonical form (3), then µ1 = 1
has to hold.

The proof of the theorem shows that πt(i) = π(i)e−t

holds for all states of the APHD in the first canonical form
which represents an exponential distribution. This also im-
plies that ϕ = π holds in this case.

Obviously, the coefficient of correlation of two exponential
distributions composed as in (8) depends on matrix ΨX,Y

which can be computed from a system of linear equations,
if both PHDs and ρX,Y are known. For given phase type
representations the minmal or maximal coefficient of corre-
lation can be computed from the following linear program.

ρ±(πX ,DX )(πY ,DY ) =

min /max
nX∑
i=1

nY∑
j=1

ΨX,Y (i, j)ψX(i)aX(i)mY (j)− 1

s.t. ψXΨX,Y = πY ,ΨX,Y ≥ 0 and ΨX,Y I1 = I1.
(12)

A similar LP can be derived for the composition (10) to
compute initial vector πX,Y that minimizes or maximizes
the coefficient of correlation.

ϱ±(πX ,DX )(πY ,DY ) =

min /max
nX∑
i=1

nY∑
j=1

πX,Y (i, j)mX(i)mY (j)− 1

s.t.
nY∑
h=1

πX,Y (i, h) = πX(i) and
nY∑
h=1

π(h, j) = πY (j)

(13)
Both LPs depend on different quantities of the APHDs. In
the first LP (12), the spread of the absorption times de-
pending on the exit state of the first random variable and

the absorption times depending on the entry state are rele-
vant, whereas the second LP (13) considers only absorption
times depending on the entry state.

Much more challenging is the generations of appropriate
PHDs that allow one to minimize or maximize the correla-
tion for given orders of the PHDs. Since the first canoni-
cal representation has only a single output state, aX(nX) =
E(X), and the second canonical form has a single input state
such that mX(1) = E(X), for a sequential composition an
APHD in the second canonical form has to be combined
with a PHD in the first canonical form and for a parallel
composition two APHDs of the first canonical form have to
be composed to achieve positive or negative correlation for
the bivariate distribution.

Theorem 2. For some PHD (π,D) with the vectors m,
ψ and a an PHD (π′,D′) can be generated by setting π′(i) =

ψ(i), µ′
i = µi and µ′

i,j = µj,i
ϕ(j)
ϕ(i)

, then (π,D) ∼ (π′,D′)

and the following relations hold

m′(i) = a(i), ψ′(i) = π(i) and a′(i) =m(i).

If one applies the theorem to an APHD with an upper
triangular matrix D, the resulting matrix D′ is lower tri-
angular but can be easily transformed into an APHD with
an upper triangular matrix by swapping the states which
implies that the indices change, i.e., state i in the original
APHD corresponds to state n − i + 1 in the transformed
APHD. The following theorem shows that Theorem 2 trans-
forms one canonical form in the other.

Theorem 3. If Theorem 2 is applied to an APHD (π,D)
in canonical form (3), then the resulting APHD (π′,D′) is
in canonical form (4) after reversing the order of the states.

The theorems imply that if an optimal representation for
two PHDs is available, in the sense that it maximizes/minimizes
the objective function in (12) or (13), then the representa-
tion is also optimal for the other LP after transforming the
representation for X using Theorem 2.
Expansion of APHDs
We now consider the consecutive generation of APHDs de-
scribing exponential distributions. To generate an APHD
representation of an exponential distribution with dimen-
sion n + 1 from an exponential distribution of dimension
n, we append a single phase resulting in a representation
(π′,D′). The new APHD is then generated as follows.

π′ = ((1− p)π, p) , D′ =

(
D f
0 −µ

)
where d ≥ f , p ∈ [0, 1).

(14)

Let d′ = −D′ I1 and π′
t = π′e−D

′t. (π′,D′) represents an

exponential distribution with rate λ if and only if π
′
td

′

π′
t I1

= λ

for all t ≥ 0. The following theorem shows that the choice
of f and µ suffers severe restrictions.

Theorem 4. For the generation of an exponential dis-
tribution of dimension n + 1 with rate 1 from an APHD
of an exponential distribution of order n according to (14),
f = (1− q)d for q ∈ [0, 1] and µ = 1−q+pq

p
are required.

Theorem 4 describes an approach to generate the first
canonical form as a corner case, where q = 0 in each step.
We will show that this case is optimal if the correlation



should be maximized or minimized. Closed form expressions
for the vectors π′, ψ′, m′ and a′ and a method to expand
an APHD according to the second canonical form can be
found in [4].

5. POSITIVE CORRELATION
We consider now APHDs that have been generated ac-

cording to Theorem 4 and maximize the correlation ρ+(π,D).

Now let ρ+(n) be the maximal correlation which can be ob-
tained by some APHD (π,D) with n phases using the step-
wise approach based on Theorem 4. For a fixed represen-
tation the optimal solution results in

∑n
i=1 π(i) (m(i))2 − 1

where m = (−D)−1 I1. Thus, representations have to be
found to maximize the sum.

We can use the normalized representation with rate λ = 1.
Obviously ρ+(1) = 0 because D = (−1) and π = (1) in this
case. This representation is unique and therefor optimal.
Let ρ+(n) be the maximal coefficient of correlation which
can be achieved by the step-wise construction of APHDs
and let (π,D) be the corresponding representation. Now

we compute a representation (π′,D′) that achieves ρ+(n+1).
According to (14) and Theorem 4 we have

π′ = ((1− p)π, p) , D′ =

(
D (1− q)d
0 −µ

)
⇒M ′ =

(
M 1−q

µ
I1

0 1
µ

)
, m′ =

(
m+ 1−q

µ
I1

1
µ

)
(15)

where µ = 1−q+pq
p

. This results in the following representa-
tion of the coefficient of correlation.

ρ(n+1) =
n∑

i=1

(1− p)π(i)
(
m(i) + 1−q

µ

)2
+ p

µ2 − 1

= (1− p)ρ+(n) + p p(1−p)(1−q)2

(1−q+pq)2

(16)

The equation results from exploitation of the relations ρ+(n) =∑n
i=1 π(i)m(i)2 − 1 and

∑n
i=1 π(i)m(i) =

∑n
i=1 π(i) = 1

and from substituting the representation of µ from Theo-
rem 4. Now consider the second term in the above sum.

f(p, q) =
p(1− p)(1− q)2

(1− q + pq)2
⇒ df

dq
= −2p2(1− p)(1− q)

(1− q + pq)3

(17)
For a fixed p ∈ (0, 1) and q ∈ [0, 1] the first derivative is
negative for q ∈ [0, 1) which means that for q = 0 the max-
imum is reached for any p. Since q does not appear in the
first term this also holds for ρ(n+1). Thus, we have

ρ+(n+1) = maxp∈(0,1)

(
(1− p)(ρ+(n) + p)

)
p = 1−ρ+(n)

2
= argmaxp∈(0,1)

(
(1− p)(ρ+(n) + p)

) (18)

The resulting APHD is in canonical form (3) and µn =

2/(1−ρ+(n)). Furthermore, ρ+(n+1) = ρ+(n)+0.25
(
1− ρ+(n)

)2
and limn→∞ ρ+(n) = 1. The partial derivatives of ρ(n) with
respect to µ−1

i are given by

d

dµ−1
i

=

π(i) (µim(i) + 2)m(i) +
∑i−1

j=1 π(j)m(j)
(
2− m(j)µi

µi−1

)
(19)

If we plug in the values for µi resulting from (18) into (19),

the derivatives for i = 2, . . . , n become 0 such that the nec-
essary conditions for optimality are observed.

We can compare the generated APHDs with the represen-
tation used in [3] with µi = i. Figure 1 shows the resulting
values for ρ depending on n and the values for µn. For
both representations limn→∞ ρ+(n) = 1 holds. However, the
representation from (18) converges slightly faster.

6. NEGATIVE CORRELATION
We now introduce a similar approach to model negative

rather than positive correlation between two exponential dis-
tributions with normalized APHD representation. In con-
trast to positive correlation, where for the joint initial vec-
tor of two identical exponential APHs (πX ,DX) π(i, i) =
πX(i) holds, it is not obvious which joint initial vector mini-
mizes the correlation. It is known that, if π(i) = π(n−i+1)
for all i = 1, . . . , n, then π(i, j) = π(i) for j = n − i + 1
and 0 otherwise results in the minimal coefficient of corre-
lation because m(i) > m(i + 1). However, the conditions
π(i) = π(n− i+ 1) puts additional constraints on the class
of APHDs and the representation computed for the max-
imal coefficient of correlation in the previous section does
not belong to this class. If the step-wise approach (14) with
µ = 1−q+pq

p
is applied starting with an exponential APHD

of order n, we obtain the following non-linear program to
compute the parameters p and q according to Theorem 4.

minp,q,π(i,j)

n+1∑
i=1

n+1∑
j=1

π′(i, j)m′(i)m′(j)

s.t. m′(i) =

{
m(i) + p−pq

1−q+pq
if i ≤ n,

p
1−q+pq

else,

p ∈ (0, 1), q ∈ [0, 1]
n+1∑
i=1

π′(i, j) =

{
(1− p)π(j) if i ≤ n,
p else,

n+1∑
j=1

π′(i, j) =

{
(1− p)π(i) if i ≤ n,
p else,

(20)

If we fix p and q the problem becomes linear. Solving this
problem consecutively for n = 1, 2, 3, . . . we obtain for the
optimal solution q = 0 and p = 1/(n + 1) which results in
the APHD proposed in [3].

To show that the resulting APHD is not globally optimal,
in the sense that we cannot find an APHD representation
with n phases that has a larger input flexibility, we now
construct an APHD (π,D) with 3 phases and the additional
restrictions that π(1) = π(3), µ1 = 1 and the APHD is
in canonical form (3). For µ3 = 3.09529, µ2 = 1.912996
we have ρ−(π,D) = −0.36154 which is slightly smaller than

ρ−(3) = −0.36111 which results form µ3 = 3 and µ2 = 2.

7. AN EXAMPLE
Single server queues where inter arrival and service times

are correlated can be modeled as PH[n]/PH[n]/1 queues,
where n equals the number of phases of the PHD to de-
scribe the arrival and service process, respectively. The
queue can be solved with matrix geometric methods using
the approach proposed in [5, 10, 12]. To model an M/M/1
queue with correlated arrival and service times and corre-
lation coefficient ρ > 0 we first have to find the minimal
n such that ρ ≤ ρ+(n). Then the corresponding APHD of
the first canonical form is generated and used to represent



Figure 1: Value of ρ+(n) and µn for the representation from (18) and the representations with phase rates i.

Figure 2: Mean population including the job in service of an M/M/1 queue with correlation between arrival
and service times. Left side mean queue length depending on the coefficient of correlation for utilization
0.8. Right side mean population including the job in service for varying utilization and negative correlation
(coefficient of correlation −0.4636), no correlation and positive correlation (coefficient of correlation 0.5502)

the service time, the distribution is also transformed to the
second canonical form to represent the arrivals. Both distri-
butions are multiplied with the corresponding rates to have
the correct arrival and service rates. A customer that arrives
from phase k of the arrival time distribution is assigned to
class k (∈ {1, . . . , n}), the initial vector of class k is chosen

as ρ/ρ+(n)ek + (1− ρ/ρ+(n))π where π is the initial vector
of the computed APHD in the first canonical form and ek
is a vector of length n with 1 in position k and 0 elsewhere.
Negative correlations can be represented similarly. The re-
sulting queue can be analyzed with the algorithms available
in [2].

We present some results for an M/M/1 queue where inter
arrival and service times are correlated. Figure 2 shows the
mean population including the job in service for different
versions of the queue. It can be seen that a negative cor-
relation between both values results in a significant larger
population, in particular for a larger utilization, and that
the population depends for a given utilization almost lin-
early on the coefficient of correlation. Some more detailed
results can be found in Figure 3. It can be noticed that for
the tail of the queue length differences between the different
versions of the queue increase and that the sojourn time of
a specific job depends heavily on the inter arrival time.

U
ρ 0.2 0.5 0.8 0.9 0.95

-0.5498 828.9 1733.5 4372.1 8263.5 15609
-0.4636 0.95 1.82 5.48 10.46 20.51
-0.2500 0.00 0.01 0.03 0.03 0.07
0.2500 0.00 0.00 0.01 0.02 0.03
0.6008 0.71 1.31 2.24 4.07 6.90
0.7222 622.2 994.2 1608.9 2363.9 3862.7

Table 1: CPU times in seconds to solve the M/M/1
queue with varying coefficient of correlation ρ and
utilization U .

The solution algorithm required to solve the M/M/1 queue
is based on the solver for the solution of SM[K]/PH[K]/1/FCFS
queues from [10], a MATLAB implementation of this algo-
rithm is available in [2]. Unfortunately, the block size of the
matrix blocks solved in the matrix geometric solution is in
O(n3) where n is the dimension of the APHD representation
of the exponential distributions. Thus, for small and large
coefficients of correlation, the effort grows quickly since the
number of phases grows quickly as shown in Figure 1. Ta-
ble 1 includes the CPU times required to solve the queue
on a standard PC with Intel(R) Core(TM) i5-9400 CPU
@ 2.90GHz with 6 cores and 8 GB of main memory. The



Figure 3: M/M/1 queue with utilization 0.8, mean service time 1. Left side queue length distribution for
negative correlation, positive correlation or no correlation. Right side density of the sojourn time for the
queue with negative correlation (coeff. of corr. −0.4636). Density for average customers, customers departing
from the first phase of arrival time distribution and arrivals from the last phase of the arrival time distribution.

wall clock time is shorter due to MATLAB’s internal paral-
lelization. It can be noticed that the solution time mainly
depends on the number of phases. In the example we used 2,
5 and 10 phases. Since the block size for the matrix geomet-
ric solution grows with O(n3), we see that it becomes very
costly to increase or decrease the coefficient of ocrrelation
further. Additionally, solution time grows with the utiliza-
tion of the queue because the solver requires more iterations
to converge and solution takes longer for negative than for
positive correlation with the same number of phases because
the rates are larger in the negative case.

8. CONCLUSIONS
The paper introduces phase type representations of expo-

nential distributions that allow one to model correlated ex-
ponential distributions by starting the distribution in some
joint states or route the output of one distribution to the
next one. The proposed results extend previously published
phase type representations for exponential distributions. The
representations of the exponential distribution can be used a
building blocks for phase type distributions and Markovian
arrival processes [4].
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