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Motivation

Modern networks are increasingly complex

• Network dynamics can be non-stationary and non-stochastic

• Some nodes are unobservable and uncontrollable

Modern networks suffer from attacks

• Distributed Denial-of-Service (DDoS) attack: some nodes are hijacked and commanded to flood the network

• Structured Query Language (SQL) injection attack: malicious commands are injected into servers

• The hijacked nodes are also unobservable and uncontrollable, with the dynamics being malicious

We aim to develop a control algorithm for networks that

• The external arrival process is malicious

• Some nodes execute malicious policies, and their states are unobservable

• Malicious: the adversary can dynamically change the attack policy based on our actions to maximize the damage
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Network Model

• Multi-hop network with 𝑁 nodes (denoted by 𝒩), 𝐾 classes.𝒩 is 

partitioned into accessible node set 𝒜 and malicious node set ℳ

• At the beginning of time slot 𝑡
• A node 𝑖 has 𝑄!"(𝑡) buffered packets of class 𝑘

• Receives 𝑎!"(𝑡) external packets (can be malicious)

• An accessible node 𝑖 ∈ 𝒜

• The controller plans to transmit 𝑓!#"(𝑡) packets to neighbor 𝑗

• The controller’s policy 𝜋 = 𝑓!#" 𝑡 $%&%'() for 𝑖 ∈ 𝒜

• A malicious node 𝑖 ∈ ℳ
• The adversary plans to transmit 𝜇!#"(𝑡) packets to neighbor 𝑗

• We cannot directly observe or control malicious nodes

• Network event sequence 𝒂 𝑡 , 𝝁 𝑡 $%&%'() : the actions taken by 

the adversary from time slot 0 to time horizon 𝑇
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Constraint Condition

𝑊 constraint
[Borodin, 1996] *

!,#

𝑄!#$ ( 𝑛 + 1 𝑊) ≤*
!,#

𝑄!#$ 𝑛𝑊 for 𝑛 = 0, 1,⋯

𝑉% constraint
[Liang, 2018] max

&'%
*
!,#

𝑄!#$ (𝑡) ≤ 𝑉%

𝑄% constraint
(This paper) *

!,#

𝑄!#
$ (𝑇) ≤ 𝑄%

Maliciousness Metrics

A network is said to have 𝑊/𝑉%/𝑄%-constrained dynamics if all network event sequences generated by
the adversary are 𝑊/𝑉%/𝑄%-constrained, respectively.

A network event sequence 𝒂 𝑡 , 𝝁 𝑡 ('&'%)* is said to satisfy a constraint if there exists a policy 𝝅 such
that the corresponding condition is satisfied when the adversary implements the network event sequence.
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Maliciousness Metrics

• A toy example where 𝑎*+ 𝑡 is malicious and

• For "'
)$ ≤ 𝑡 < "'

)$ +
'
*$ with 𝑘 = 0, 1,⋯ , 9, 𝑎)+ 𝑡 = 2

• For "'
)$ +

'
*$ ≤ 𝑡 < ",) '

)$ with 𝑘 = 0, 1,⋯ , 9, 𝑎)+ 𝑡 = 0

• In other words, for each interval of length '
)$, malicious arrival only exists during the first half interval

• For each interval #%
*(
≤ 𝑡 < #,* %

*(
, the net increase of queue is zero, thus 𝑊 = %

*(

• The peak queue occurs at 𝑡 = #%
*(
+ %

-(
, which is %

-(
, thus 𝑉% =

%
-(

• Since all packets are cleared at 𝑇, 𝑄% = 0
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Constraint Requirement Relationship

𝑊 constraint
[Borodin, 1996] Periodic patterns

𝑄% ≤ 𝑉% ≤ 𝑐 ⋅ 𝑊𝑉% constraint
[Liang, 2018] Limited burstiness

𝑄% constraint
(This paper) None

Maliciousness Metrics

Since
• Previous algorithms can stabilize the networks with 𝑊 = 𝑜(𝑇) or 𝑉' = 𝑜 𝑇

• Our algorithm can stabilize the networks with 𝑄' = 𝑜 𝑇 (proved later)

• 𝑊 = 𝑜(𝑇) or 𝑉' = 𝑜 𝑇 guarantees 𝑄' = 𝑜 𝑇 , but not vice versa

We know that
• Our algorithm can stabilize all stabilizable networks in previous works

• Some networks are not guaranteed to be stable under previous algorithms, but can be stabilized by our algorithm
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Overview

• Construct an imaginary network where every node is observable and controllable

• For a malicious node 𝑖 ∈ ℳ in the imaginary network, its queue and action may be different from the 

real network, and are denoted by 𝑋!# and 𝑔!.#, respectively

• The imaginary network is easier to stabilize. If we can also stabilize the gap 𝑌!# ≜ 𝑄!# − 𝑋!# at the same 

time, the real system is stabilized

Imaginary NetworkReal Network
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Overview

• Define a Lyapunov function

Φ 𝑡 = *
!∈𝒜,#

𝑄!#- (𝑡) + *
!∈ℳ,#

𝑋!#- (𝑡) + *
!∈ℳ,#

𝑌!#- (𝑡)

• We aim at minimizing the one-slot drift

ΔΦ 𝑡 = ?
!∈𝒜,"

𝑄!" 𝑡 Δ𝑄!"(𝑡) + ?
!∈ℳ,"

𝑋!" 𝑡 Δ𝑋!"(𝑡) + ?
!∈ℳ,"

𝑌!" 𝑡 Δ𝑌!"(𝑡)

• However, 𝑌!# 𝑡 requires knowledge of 𝑄!# 𝑡 for 𝑖 ∈ ℳ, which is unobservable

• For 𝑖 ∈ ℳ, suppose we can estimate 𝑄!# 𝑡 , but only inside a sparse set of time slots Γ!
• When 𝑡 ∈ Γ!, we obtain an estimate C𝑄!"(𝑡) and estimate 𝑌!" 𝑡 as C𝑌!" 𝑡 = C𝑄!" 𝑡 − 𝑋!" 𝑡 . We allow the 

estimates to be erroneous

• When 𝑡 ∉ Γ!, we simply use the most recently updated C𝑌!" 𝑡

Accessible queues
Imaginary malicious queues

Gaps of the imaginary malicious queues
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MWUM (MaxWeight for Networks with Unobservable Malicious Nodes)

• At the beginning of time slot 𝑡, if 𝑡 ∈ Γ!, obtain an estimate L𝑄!#(𝑡) and estimate 𝑌!# 𝑡 as 

L𝑌!# 𝑡 = L𝑄!# 𝑡 − 𝑋!# 𝑡

• Solve

• Apply 𝒇𝑴(𝒕) to accessible nodes in the real network

• Apply both 𝒇𝑴(𝒕) and 𝒈𝑴(𝒕) to all nodes in the imaginary network
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Theorem 1

If 𝑄% = 𝑜(𝑇), ∑!"#
$%& 4(&)
%

= 𝑜(𝑇) and 𝜖!#(𝑡) = 𝑜 𝑡 , we have lim
%→8

∑',) 9') %
%

= 0, i.e., the network is

rate stable, under MWUM.

If 𝑄' = 𝛺(𝑇), there exists a network event sequence under which no policy can stabilize the network. If the adversary

implements it, the network is not stabilizable. Meanwhile, when 𝑄' = 𝑜(𝑇), the network is stabilizable.

Stability

Average delay in estimation

Estimation error at 𝑡

Corollary 1

The stability region of a given network is the set of network event sequences with 𝑄% = 𝑜 𝑇 .

Corollary 2

MUWM is throughput-optimal.
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Theorem 2

There exists a network with 𝑄%-constrained dynamics (where 𝑄% = 𝑜(𝑇)) and 𝜖!#(𝑡) = Ω 𝑡 such

that no state-based algorithm can achieve rate stability.

Since MWUM can stabilize the network when 𝜖!#(𝑡) = 𝑜 𝑡 , MWUM is maximally robust.

Robustness to Estimation Errors

Definition

A state-based algorithm determines control actions solely based on queue information.

MWUM , MaxWeight, BackPressure, reinforcement learning methods in network are all state-based.

Intuition: since the external arrival in each time slot is bounded, the queue of any node grows at most linear in time.

When 𝜖!"(𝑡) = 𝛺 𝑡 , the noise may completely mask the queue and thus hide the state information.
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Model

• All links have capacity C = 5

• The adversary tends to allocate data to heavy loaded

nodes, since the nodes are closer to instability

• Malicious injection
• 𝑎+ = 2

• Can inject into node 1, 4 or 10

• Selects the node with the largest queue

• Malicious action

• 𝜇*1 𝑡 = 5 for 𝑡 ≤ '
*, and 𝜇*1 𝑡 = 1 for 𝑡 > '

*

• 𝜇12 𝑡 ≡ 5

• Node 4 and 6 apply the “join the longest queue” policy (in

contrast to the JSQ policy)



19

Numerical Results without Estimation Errors
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Numerical Results with Estimation Errors
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Summary of Contributions

Modeling

• Propose a new maliciousness metric 𝑄' constraint

• Analyze the relationship between the 𝑄' constraint and the existing 𝑊 constraint and 𝑉' constraint

• Specify the stability region of networks with unobservable malicious nodes

Algorithm Design

• Existing relevant network control algorithms either require stochastic dynamics or full observability

• Develop the MWUM algorithm and rigorously show that MUWM is throughput optimal

Robustness Analysis

• Analyze the impact of estimation errors

• Show that MUWM is maximally robust to estimation errors


