Optimal Control for Networks with Unobservable Malicious Nodes

Bai Liu (MIT LIDS) Eytan Modiano (MIT LIDS)

BACKGROUND

MODEL

ALGORITHM

ANALYSIS

SIMULATION

BACKGROUND

Motivation

Modern networks are increasingly complex

- Network dynamics can be non-stationary and non-stochastic
- Some nodes are unobservable and uncontrollable

Modern networks suffer from attacks

- Distributed Denial-of-Service (**DDoS**) attack: some nodes are hijacked and commanded to flood the network
- Structured Query Language (SQL) injection attack: malicious commands are injected into servers
- The hijacked nodes are also unobservable and uncontrollable, with the dynamics being malicious

We aim to develop a control algorithm for networks that

- The external arrival process is malicious
- Some nodes execute malicious policies, and their states are unobservable
- Malicious: the adversary can dynamically change the attack policy based on our actions to maximize the damage

MODEL

Network Model

- Multi-hop network with N nodes (denoted by N), K classes. N is partitioned into accessible node set A and malicious node set M
- At the beginning of time slot *t*
 - A node i has $Q_{ik}(t)$ buffered packets of class k
 - Receives $a_{ik}(t)$ external packets (can be **malicious**)
- An accessible node $i \in \mathcal{A}$
 - The controller plans to transmit $f_{ijk}(t)$ packets to neighbor j
 - The controller's policy $\pi = \{f_{ijk}(t)\}_{0 \le t \le T-1}$ for $i \in \mathcal{A}$
- A malicious node $i \in \mathcal{M}$
 - The **adversary** plans to transmit $\mu_{ijk}(t)$ packets to neighbor j
 - We cannot directly observe or control malicious nodes
 - Network event sequence $\{a(t), \mu(t)\}_{0 \le t \le T-1}$: the actions taken by

the adversary from time slot 0 to time horizon T

Maliciousness Metrics

A network event sequence $\{a(t), \mu(t)\}_{0 \le t \le T-1}$ is said to satisfy a constraint **if there exists a policy** π **such that the corresponding condition is satisfied** when the adversary implements the network event sequence.

Constraint	Condition		
W constraint [Borodin, 1996]	$\sum_{i,k} Q_{ik}^{\pi}((n+1)W) \leq \sum_{i,k} Q_{ik}^{\pi}(nW) \text{ for } n = 0, 1, \cdots$		
V _T constraint [Liang, 2018]	$\max_{t \le T} \sum_{i,k} Q_{ik}^{\pi}(t) \le V_T$		
Q_T constraint (This paper)	$\sum_{i,k} Q_{ik}^{\pi}(T) \le Q_T$		

A network is said to have $W/V_T/Q_T$ -constrained dynamics if all network event sequences generated by the adversary are $W/V_T/Q_T$ -constrained, respectively.

Maliciousness Metrics

• A toy example where $a'_1(t)$ is malicious and

• For
$$\frac{kT}{10} \le t < \frac{kT}{10} + \frac{T}{20}$$
 with $k = 0, 1, \dots, 9, a_1'(t) = 2$

• For $\frac{kT}{10} + \frac{T}{20} \le t < \frac{(k+1)T}{10}$ with $k = 0, 1, \dots, 9, a_1'(t) = 0$

- In other words, for each interval of length $\frac{T}{10}$, malicious arrival only exists during the first half interval
- For each interval $\frac{kT}{10} \le t < \frac{(k+1)T}{10}$, the net increase of queue is zero, thus $W = \frac{T}{10}$
- The peak queue occurs at $t = \frac{kT}{10} + \frac{T}{20}$, which is $\frac{T}{20}$, thus $V_T = \frac{T}{20}$
- Since all packets are cleared at T, $Q_T = 0$

Maliciousness Metrics

Constraint	Requirement	Relationship
<i>W</i> constraint [Borodin, 1996]	Periodic patterns	
V_T constraint [Liang, 2018]	Limited burstiness	$Q_T \le V_T \le c \cdot W$
Q_T constraint (This paper)	None	

Since

- Previous algorithms can stabilize the networks with W = o(T) or $V_T = o(T)$
- Our algorithm can stabilize the networks with $Q_T = o(T)$ (proved later)
- W = o(T) or $V_T = o(T)$ guarantees $Q_T = o(T)$, but not vice versa

We know that

- Our algorithm can stabilize all stabilizable networks in previous works
- Some networks are not guaranteed to be stable under previous algorithms, but can be stabilized by our algorithm

ALGORITHM

Overview

- Construct an **imaginary network** where every node is observable and controllable
- For a malicious node $i \in \mathcal{M}$ in the imaginary network, its queue and action may be different from the real network, and are denoted by X_{ik} and g_{ijk} , respectively
- The **imaginary network is easier to stabilize**. If we can also stabilize **the gap** $Y_{ik} \triangleq Q_{ik} X_{ik}$ at the same time, the **real system is stabilized**

Overview

• Define a Lyapunov function

• We aim at minimizing the one-slot drift

$$\Delta \Phi(t) = \sum_{i \in \mathcal{A}, k} Q_{ik}(t) \Delta Q_{ik}(t) + \sum_{i \in \mathcal{M}, k} X_{ik}(t) \Delta X_{ik}(t) + \sum_{i \in \mathcal{M}, k} Y_{ik}(t) \Delta Y_{ik}(t)$$

- However, $Y_{ik}(t)$ requires knowledge of $Q_{ik}(t)$ for $i \in \mathcal{M}$, which is unobservable
- For $i \in \mathcal{M}$, suppose we can estimate $Q_{ik}(t)$, but only inside a sparse set of time slots Γ_i
 - When $t \in \Gamma_i$, we obtain an estimate $\hat{Q}_{ik}(t)$ and estimate $Y_{ik}(t)$ as $\hat{Y}_{ik}(t) = \hat{Q}_{ik}(t) X_{ik}(t)$. We allow the estimates to be erroneous
 - When $t \notin \Gamma_i$, we simply use the most recently updated $\hat{Y}_{ik}(t)$

MWUM (MaxWeight for Networks with Unobservable Malicious Nodes)

- At the beginning of time slot t, if $t \in \Gamma_i$, obtain an estimate $\hat{Q}_{ik}(t)$ and estimate $Y_{ik}(t)$ as $\hat{Y}_{ik}(t) = \hat{Q}_{ik}(t) - X_{ik}(t)$
- Solve

$$f^{M}(t), g^{M}(t) = \operatorname*{argmin}_{0 \le f_{ijk}, g_{ijk} \le C_{ij}} \sum_{i \in \mathcal{A}, k} Q_{ik}(t) \left[\sum_{j \in \mathcal{A}} f_{jik} - \sum_{j \in \mathcal{N}} f_{ijk} \right] + \sum_{i \in \mathcal{M}, k} X_{ik}(t) \left[\sum_{j \in \mathcal{A}} f_{jik} + \sum_{j \in \mathcal{M}} g_{jik} - \sum_{j \in \mathcal{N}} g_{ijk} \right] - \sum_{i \in \mathcal{M}, k} \max\{\widehat{Y}_{ik}(t), 0\} \cdot \left[\sum_{j \in \mathcal{M}} g_{jik} - \min\{\sum_{j \in \mathcal{N}} g_{ijk}, X_{ik}(t) + a_{ik}(t)\} \right]$$

- Apply $f^{M}(t)$ to accessible nodes in the **real** network
- Apply both $f^M(t)$ and $g^M(t)$ to all nodes in the **imaginary** network

ANALYSIS

Stability

Theorem 1

If
$$Q_T = o(T)$$
, $\frac{\sum_{t=0}^{T-1} L(t)}{T} = o(T)$ and $|\epsilon_{ik}(t)| = o(t)$, we have $\lim_{T \to \infty} \frac{\sum_{i,k} Q_{ik}(T)}{T} = 0$, i.e., the network is rate stable, under MWUM.

Corollary 1

The stability region of a given network is the set of network event sequences with $Q_T = o(T)$.

If $Q_T = \Omega(T)$, there exists a network event sequence under which **no policy can stabilize** the network. If the adversary implements it, the network is not stabilizable. Meanwhile, when $Q_T = o(T)$, the network is stabilizable.

Corollary 2

MUWM is throughput-optimal.

Robustness to Estimation Errors

Definition

A state-based algorithm determines control actions solely based on queue information.

MWUM, MaxWeight, BackPressure, reinforcement learning methods in network are all state-based.

Theorem 2

There exists a network with Q_T -constrained dynamics (where $Q_T = o(T)$) and $|\epsilon_{ik}(t)| = \Omega(t)$ such that **no state-based algorithm** can achieve rate stability.

Intuition: since the external arrival in each time slot is bounded, the queue of any node grows at most linear in time. When $|\epsilon_{ik}(t)| = \Omega(t)$, the noise may completely mask the queue and thus hide the state information.

Since MWUM can stabilize the network when $|\epsilon_{ik}(t)| = o(t)$, MWUM is maximally robust.

SIMULATION

Model

- All links have capacity C = 5
- The adversary tends to allocate data to heavy loaded nodes, since the nodes are closer to instability
- Malicious injection
 - *a*′ = 2
 - Can inject into node 1, 4 or 10
 - Selects the node with the largest queue
- Malicious action
 - $\mu_{23}(t) = 5$ for $t \le \frac{T}{2}$, and $\mu_{23}(t) = 1$ for $t > \frac{T}{2}$
 - $\mu_{37}(t) \equiv 5$
 - Node 4 and 6 apply the "join the longest queue" policy (in contrast to the JSQ policy)

Numerical Results without Estimation Errors

Numerical Results with Estimation Errors

Summary of Contributions

Modeling

- Propose a **new maliciousness metric** Q_T constraint
- Analyze the relationship between the Q_T constraint and the existing W constraint and V_T constraint
- Specify the stability region of networks with unobservable malicious nodes

Algorithm Design

- Existing relevant network control algorithms either require stochastic dynamics or full observability
- Develop the MWUM algorithm and rigorously show that MUWM is throughput optimal

Robustness Analysis

- Analyze the impact of estimation errors
- Show that MUWM is maximally robust to estimation errors