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ABSTRACT
We construct novel exact and approximate solutions for mean-
value analysis and probabilistic evaluation of closed queue-
ing network models with limited load-dependent (LLD) nodes.
In this setting, load-dependent functions are assumed to be-
come constant after a finite queue-length threshold. For
single-class models, we provide an explicit formula for the
normalizing constant that applies to models with arbitrary
LLD functions, whilst retaining constant complexity with
respect to the total population size. From this result, we
then derive corresponding closed-form solutions for the mul-
ticlass case and show that these yield a novel mean value
analysis approach for LLD models. Significantly, this al-
lows us to determine exactly the correction factor between
a load-independent solution and a limited load-dependent
one, enabling the reuse of state-of-the-art methods for load-
independent models in the analysis of load-dependent net-
works.
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1. INTRODUCTION
Despite a long history of work on this subject [6], when lim-
ited load-dependent (LLD) stations are considered in mul-
ticlass closed networks, which are natural representations of
systems with finite levels of parallelism, they remain diffi-
cult to analyze. Commonly employed evaluation techniques,
such as mean value analysis (MVA) [8], are significantly
less efficient in the LLD setting than in the case of mod-
els that include only fixed-rate stations and infinite servers,
i.e., the so-called load-independent (LI) case. For exam-
ple, in LI models, mean queue lengths alone can be effi-
ciently used to determine recursively the network equilib-
rium performance, as is routinely done in the classic MVA
algorithm [8]. Conversely, the solution of a LLD model re-
quires the entire queue-length distribution at each station
to be carried through the load-dependent MVA algorithm
recursion (MVA-LD) [9], significantly increasing computa-
tional requirements. Besides being inefficient, this approach
can introduce numerical instabilities [7].

In this abstract, we report the key results derived in [4],
which revisits the problem. The paper determines in partic-
ular novel exact and approximate solutions for product-form
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LLD closed queueing networks, both in the single-class and
multiclass cases. For a full derivation of the results, as well
as several additional contributions, we point the reader to
[4].

1.1 Reference model
We study closed multiclass queueing networks that admit
a product-form solution [1]. The queueing network model
under study has M LLD queues and R job classes. Each
class is populated by Nr jobs, with N = N1+ . . .+NR. The
state space of the underlying Markov process is S(N) =

{n = (n1,1, . . . , nM,R) | nk,r ≥ 0,
∑M

k=1 nk,r = Nr}, where
we focus only on the marginal states in which nk,r denotes
the total number of class-r jobs residing at queue k, either
queueing or receiving service.

For queue k, we denote by θk,r the mean service demand
of class r, which is the product of the mean number of visits
with the mean service time of a class r job at queue k. If
queue k is load-dependent then the service demand of the
job in service is scaled by a load-dependent factor αk(nk) if

the queue has nk =
∑R

r=1 nk,r resident jobs. Throughout
the paper we consider load-dependent scaling factors αk(nk)
that meet the LLD condition, i.e., αk(nk) = αk(sk), ∀nk ≥
sk. For finite populations, this assumption does not reduce
generality, as one may consider a general load-dependent
model as having sk = N , ∀k.

With the above definitions, the equilibrium distribution
of the network is then given by [1]

π(n) =
1

Hθ(N)

M∏
k=1

nk!

αk(nk)

R∏
r=1

θ
nk,r

k,r

nk,r!
n ∈ S(N) (1)

whereN = (N1, . . . , NR). The normalizing constantHθ(N)
in (1) ensures that probabilities sum to unity. Furthermore,
mean performance metrics can be directly derived from it [2].

2. SINGLE CLASS LLD MODELS
Closed-form expressions for normalizing constants in LI mod-
els are derived in [5, Eq. (29)], which obtains a closed-form
solution for single-class LLD models with single-server and
multi-server stations. All such results are generalized by the
following expression obtained in [4], which applies to arbi-
trary LLD models.

Theorem 2.1. In a single-class LLD closed queueing net-
work with M stations

hθ(N) =
∑

0≤v<s

gσ(N − v)Φθ(v) (2)



where v = (v1, . . . , vM ), v = |v|, s = (s1, . . . , sM ), and we

define Φθ(v) =
∏M

k=1 ϕk(vk), and

ϕk(vk) =
θ
vk
k∏vk

t=1 αk(t)

(
1− αk(vk)

αk(sk)

)
for 0 ≤ vk < sk.

In the above result, gσ(N − v) represents the normalizing
constant of a LI model with scaled demands σ = (σ1, . . . , σM ),
where σi = θi/αi(si) and total job population N − v.

It is possible to derive from the above several novel expres-
sions for the LLD normalizing constant also in the multiclass
setting. This is made possible by a finite difference relation
connecting the single class normalizing constant hθ(N) with
its multiclass counterpart Hθ(N). In particular, [4] derives
novel integral expressions, such as formulations on the unit
simplex and novel expressions leveraging the Norlund-Rice
integral form for finite differences. Notably, the latter re-
quires one to consider integrands that are themselves single-
class normalizing constants, but with complex service de-
mands. As such, specialized results are obtained in [4] to
evaluate normalizing constants with complex demands as
well as their complex derivatives.

3. MULTICLASS LLD MODELS
As shown in [4], it is also possible to establish a relationship
similar to (2) in the multiclass setting through the following
theorem.

Theorem 3.1. The normalizing constant for a model with
M LLD queueing stations and R classes, having demands
θk,r and scaling functions αk, admits the following reduced
convolution expression

Hθ(N) =

V∑
v=0

∑
d≥0:
|d|=v

Gσ(N − d)Eθ(d) (3)

where d = (d1, . . . , dR) and V = min(N,
∑M

k=1(sk − 1)).
Here, Gσ is the multiclass normalizing constant of a LI
model with scaled demands σk,r = θk,r/αk(sk), and we de-
fine

Eθ(d) =
∑

v∈S(d)

M∏
i=1

vi!∏vi
k=1 αi(k)

(
1− αi(vi)

αi(si)

) R∏
r=1

θ
vi,r
i,r

vi,r!
(4)

Eθ(d) may itself be seen as a LLD multiclass normalizing
constant for a model with demands θk,r and suitably defined
scaling functions [4].

Using Theorem 3.1, [4] establishes in particular the exact
correction factor between the LLD model under study and
the related LI model with normalizing constant Gσ(N).

Theorem 3.2 (Exact LLD correction). The normal-
izing constant for a model with M LLD queueing stations
and R classes, having demands θk,r and scaling functions
αk, may be obtained from the normalizing constant of a re-
lated fixed-rate model with scaled demands σ as follows

Hθ(N) = Γ(N)Gσ(N) (5)

where the LLD correction factor is the quantity

Γ(N) =

V∑
v=0

∑
d≥0:
|d|=v

∏
(s,r)∈P (d,N)

Xσ
r (s)Eθ(d) (6)

where P (d,N) =
{
(s, r) | s = (N1, . . . , Nr−1, nr, Nr+1 −

dr+1, . . . , NR−dR) : ∀r = 1, . . . , R; ∀nr = Nr −dr, . . . , Nr

}
,

V is defined in Theorem 3.1, Xσ
r (N) is the mean system

throughput of class r in the LI model, and Eθ(d) as in (4).

A notable consequence of the last result is the following
characterization of the class-r system throughput.

Theorem 3.3. The exact relationship between the mean
system throughput Xr(N) of a LLD model and the corre-
sponding metric Xσ

r (N) in a fixed-rate model with scaled
demands σ, is given by

Xr(N) =
Γ(N − 1r)

Γ(N)
Xσ

r (N) (7)

for all classes r = 1, . . . , R, and in which Γ(·) is the LLD
correction factor defined in (6).

Stemming from this result, [4] derives a novel approximate
mean-value analysis method, called reduction heuristic, that
is shown to produce more accurate approximations for LLD
models than existing techniques. This is shown over several
thousands of experiments reported in [4].
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