
Extended Abstract: Characterizing Concurrency
Mechanisms for NVIDIA GPUs under Deep Learning

Workloads

Guin Gilman Robert J. Walls
Department of Computer Science

Worcester Polytechnic Institute, Worcester, MA, USA
{grgilman, rjwalls}@wpi.edu

1. INTRODUCTION
Hazelwood et al. observed that at Facebook data cen-

ters, variations in user activity (e.g. due to diurnal load)
resulted in low utilization periods with large pools of idle
resources [4]. To make use of these resources, they pro-
posed using machine learning training tasks. Analagous low-
utilization periods have also been observed at the scale of
individual GPUs when using both GPU-based inference [1]
and training [6]. The proposed solution to this latter prob-
lem was colocating additional inference or training tasks on
a single GPU. We go a step further than these previous stud-
ies by considering the GPU at the microarchitectural level
rather than treating it as a black box. Broadly, we consider
the following question: are current GPU application- and
block-level scheduling mechanisms sufficient to guarantee
predictable and low turnaround times for latency-sensitive
inference requests, while also consistently making use of un-
occupied resources for best-effort training tasks? To an-
swer this question, we explore both NVIDIA’s concurrency
mechanisms and the characteristics of the workload itself.
Complicating our analyses, the NVIDIA scheduling hierar-
chy is proprietary and some mechanisms (e.g., time-slicing)
are not well-documented, so their behavior must be reverse-
engineered from empirical observation.

In our work, of which an extended version can be found
here [2], we focus on three application concurrency mecha-
nisms currently offered by NVIDIA devices on the new Am-
pere microarchitecture: priority streams, time-slicing, and
multi-process service (MPS). We consider scheduling behav-
ior at the application, kernel, and thread block levels.1 We
find that all three concurrency mechanisms have important
limitations. For example, when using priority streams, the
kernels of the higher-priority inference task frequently expe-
rience compounded delay as they are forced to wait behind
blocks of training task kernels for GPU resources. Time-
slicing disallows separate applications from being executed
on the GPU simultaneously, making it difficult to improve
utilization from a serial execution case. MPS makes it possi-
ble to assign a proportional share of resources to each appli-

1A kernel in CUDA programming is the term for the code
which is executed on the GPU. A kernel is comprised of a
logical array (i.e., a grid) of independent thread blocks, that
each execute the same block of code in parallel on different
subsets of data.

Copyright is held by author/owner(s).

cation, but it is not possible to assign a scheduling priority
to a task.

With these limitations in mind, we conclude that a fine-
grained block-level preemption mechanism, if implemented,
would improve turnaround time and utilization for concur-
rent deep learning workloads. Such a mechanism would al-
low the GPU to preempt any particular subset of thread
blocks during their execution to be resumed at a later point
in time. This ability to preempt at the thread-block level
could be used in conjunction with thread block placement
policies to improve predictability when servicing inference
requests, e.g., by choosing placements which minimize re-
source contention. We additionally demonstrate that there
are many opportunities to hide the cost of fine-grained pre-
emption.

2. WORKLOAD DESIGN AND
CHARACTERIZATION

We considered a concurrent workload consisting of a sin-
gle deep learning training task and sequence of inference
tasks. These workloads were designed to resemble the sce-
nario of an inference server responding to user requests while
training models with spare resources. We measured three
performance metrics: (i) average turnaround time of the in-
ference requests, (ii) variation in turnaround time, and (iii)
the execution time of the training task as a proxy metric
for utilization. Note that we reverse-engineered the features
of each concurrency mechanism which were not included in
the documentation (e.g., the behavior of time-slicing and the
thread block scheduling policies). All tests were performed
on the NVIDIA Geforce RTX 3090 GPU of the Ampere mi-
croarchitecture, which has 82 SMs, and each SM has a limit
of 1536 threads, 16 thread blocks, 64 KB in registers, 1024
KB of shared memory, 24 GB DRAM, and 6144 KB L2
cache.

2.1 Methodology
We examined models from two sources, the first of which

was the Tensorflow models from the MLPerf training and in-
ference benchmark suites [5]. For each experiment, we ran
one training task and one inference task concurrently. We
configured the training task to run for the entire duration of
the experiment, and the batch sizes we used were the max-
imum possible before encountering an out-of-memory error.
We used two request patterns for the inference tasks. First,
we used a pattern where the request arrival times followed
a Poisson process (i.e., MLPerf’s server mode). Second, we



used a pattern where one request immediately followed the
previous (i.e., MLPerf’s single stream mode). We used 500
requests for the former and 5000 requests for the latter so
that the inference task would take a comparable amount of
time regardless of what request pattern was used. For the
supplemental CNN models, we only used the single-stream
distribution.

2.2 Workload Characteristics
The deep learning workloads we examined exhibited three

main characteristics that are relevant to the concurrency
mechanisms’ performance. First, a single training (or infer-
ence) task consists of a sequence of kernels that are launched
onto the GPU serially to perform computations on subsets
of the data. Each of those kernels has different resource re-
quirements and runtimes. Consequently, the resource usage
of the task will fluctuate over the course of its execution as
subsequent kernels are launched.

Second, the training tasks included long-running kernels.
These were kernels which took longer than 1ms to run when
executed on the GPU in isolation. Long-running kernels oc-
cupy GPU resources for a significant amount of time, and so
mechanisms that lack the ability to interrupt thread blocks
mid-execution must wait for them to finish before reassign-
ing those resources.

Third, a significant portion of the runtime of these work-
loads was spent on executing large kernels from either the
training or inference tasks. We define a kernel as large if it
has a grid of blocks that cannot all fit onto the GPU’s SMs at
the same time. Large kernels may inefficiently occupy GPU
resources by preventing further thread blocks from being
scheduled and making use of the underutilized resources.

3. CONCURRENCY MECHANISMS
CHARACTERIZATION

We make a number of observations about the performance
of the concurrency mechanisms with deep learning work-
loads. We outline a subset of them here, but the full set
with extended analysis can be found in the extended ver-
sion of this work [2].

Observation: Priority streams resulted in high and less pre-
dictable turnaround times for the inference tasks, primarily
because the priority stream mechanism cannot preempt exe-
cuting thread blocks of the training task.

When a kernel from a higher-priority stream arrives at the
GPU, its thread blocks will only take precedence over the
unscheduled blocks of lower-priority kernels. In other words,
the higher-priority kernel must wait for any currently-executing
blocks from a lower-priority stream to finish. This led to a
phenomenon we term compounded delay.

Compounded delay refers to a situation that occurred in
our experiments wherein after a high priority inference ker-
nel finished executing, there was a window of time before
the next inference kernel reached the GPU. In this time-
frame, there were no inference kernels ready to execute, so
the lower-priority training kernel would resume executing
and fill the GPU with its blocks. Shortly after resuming the
training kernel, the next inference kernel would arrive. As
the priority streams mechanism does not support preemp-
tion of executing thread blocks, the inference kernel had to
wait for the currently-executing training blocks to finish.

Observation: While MPS increased utilization overall, it
also caused resource contention that added to the execution
times of both the training and inference tasks.

Thread blocks are assigned to computational units called
streaming multiprocessors (SMs). MPS (and priority streams)
allows for thread blocks from different applications to be as-
signed to the same SM. This allows for fine-grained resource
assignment, but it can also create contention for resources
when the blocks require the same resource, leading to sig-
nificant performance degradation. Furthermore, it is chal-
lenging to predict the performance of colocated kernels [3,
7]. For example, for the VGG-19 model, MPS (and priority
streams) had an average turnaround time almost twice as
large as time-slicing (20ms compared to 10ms), the latter of
which does not suffer from this type of resource contention
because time-slicing does not execute kernels from separate
applications at the same time.

Observation: Time-slicing had predictable and low turn-
around times for models with a lower number of memory
transfers, due to a lack of interference from the training task.

The primary limitation of time-slicing is lower utilization
than the other two mechanisms, as only one application is
executing during any given time slice. For instance, for the
DenseNet-201 model, the training time increased to over
100 seconds more than the baseline. We also found that
contention due to memory transfers can adversely impact
predictability and turnaround time. Consequently, infer-
ence tasks with a high number of memory transfers took far
longer to execute. Time-slicing is further limited by the fact
that the two tasks can only be launched together if the sum
total of the resources required by both is less than the to-
tal available on the GPU, despite the fact that they never
execute on the GPU at the same time.

4. CONCLUSIONS
Concurrent deep learning workloads have characteristics

which limit the effectiveness of current NVIDIA GPU con-
currency mechanisms, including sequential kernel launches,
fluctuating resource requirements, and stochastic arrival times.
Consequently, priority streams and MPS are both vulnerable
to unpredictable performance penalties incurred by resource
contention and higher turnaround times due to the effects
of compounded delay, while time-slicing lacks the spatial-
sharing capabilities needed to improve utilization and mem-
ory transfer contention can increase turnaround times.

These observations suggest that for concurrent deep learn-
ing workloads, GPU utilization and predictability might be
improved with fine-grained preemption of thread blocks. By
combining fine-grained preemption with priority streams or
MPS, it is possible to take advantage of task prioritization
while avoiding issues like compounded delay. Further, the
cost of fine-grained preemption might be hidden by taking
advantage of the fact that the deep learning tasks are a se-
quence of kernels. For example, while a small high-priority
inference kernel is being executed on the GPU, if a larger
inference kernel which requires more resources follows it, the
GPU can preempt additional blocks of the training task dur-
ing the execution of the smaller kernel. This will guarantee
that there will be enough space available to schedule the
large inference kernel as soon as it arrives.



5. REFERENCES
[1] A. Dhakal, S. G. Kulkarni, and K. K. Ramakrishnan.

Gslice: Controlled spatial sharing of gpus for a scalable
inference platform. SoCC ’20, page 492–506, New York,
NY, USA, 2020. Association for Computing Machinery.

[2] G. Gilman and R. J. Walls. Characterizing concurrency
mechanisms for nvidia gpus under deep learning
workloads. Performance Evaluation, 151:102234, 2021.

[3] G. R. Gilman, S. S. Ogden, T. Guo, and R. J. Walls.
Demystifying the placement policies of the gpu thread
block scheduler for concurrent kernels. In 38th
International Symposium on Computer Performance,
Modeling, Measurements and Evaluation 2020, 2020.

[4] K. Hazelwood, S. Bird, D. Brooks, S. Chintala,
U. Diril, D. Dzhulgakov, M. Fawzy, B. Jia, Y. Jia,
A. Kalro, J. Law, K. Lee, J. Lu, P. Noordhuis,
M. Smelyanskiy, L. Xiong, and X. Wang. Applied
machine learning at facebook: A datacenter
infrastructure perspective. In 2018 IEEE International
Symposium on High Performance Computer
Architecture (HPCA), pages 620–629, 2018.

[5] V. J. Reddi, C. Cheng, D. Kanter, P. Mattson,
G. Schmuelling, C.-J. Wu, B. Anderson, M. Breughe,
M. Charlebois, W. Chou, R. Chukka, C. Coleman,
S. Davis, P. Deng, G. Diamos, J. Duke, D. Fick, J. S.
Gardner, I. Hubara, S. Idgunji, T. B. Jablin, J. Jiao,
T. S. John, P. Kanwar, D. Lee, J. Liao, A. Lokhmotov,
F. Massa, P. Meng, P. Micikevicius, C. Osborne,
G. Pekhimenko, A. T. R. Rajan, D. Sequeira,
A. Sirasao, F. Sun, H. Tang, M. Thomson, F. Wei,
E. Wu, L. Xu, K. Yamada, B. Yu, G. Yuan, A. Zhong,
P. Zhang, and Y. Zhou. Mlperf inference benchmark,
2019.

[6] W. Xiao, S. Ren, Y. Li, Y. Zhang, P. Hou, Z. Li,
Y. Feng, W. Lin, and Y. Jia. Antman: Dynamic scaling
on GPU clusters for deep learning. In 14th USENIX
Symposium on Operating Systems Design and
Implementation (OSDI 20), pages 533–548. USENIX
Association, November 2020.

[7] Q. Xu, H. Jeon, K. Kim, W. W. Ro, and
M. Annavaram. Warped-slicer: Efficient intra-sm
slicing through dynamic resource partitioning for gpu
multiprogramming. In 2016 ACM/IEEE 43rd Annual
International Symposium on Computer Architecture
(ISCA), 2016.


