
Evaluating FFT-based Algorithms for Strided Convolutions
on ARMv8 Architectures∗

Xiandong Huanga, Qinglin Wang†a, Shuyu Lub, Ruochen Haoa, Songzhu Meia, and Jie Liua

aNational University of Defense Technology

bUniversity of Pittsburgh

ABSTRACT
Convolutional Neural Networks (CNNs) have been widely
adopted in all kinds of artificial intelligence applications.
Most of the computational overhead of CNNs is mainly
spent on convolutions. An effective approach to reducing
the overhead is FFT-based fast algorithms for convolutions.
However, current FFT-based fast implementations cannot
be directly applied to strided convolutions with a stride
size of greater than 1. In this paper, we first introduce
rearrangement- and sampling-based methods for applying
FFT-based fast algorithms on strided convolutions. Then,
the highly optimized parallel implementations of the two
methods on ARMv8-based many-core CPU are presented.
Lastly, we benchmark the implementations against the two
GEMM-based implementations on this ARMv8 CPU. Our
experimental results with convolutions of different kernel,
and feature maps, and batch sizes show that the rearrangement-
based method generally exceed the sampling-based one un-
der the same optimizations in most cases, and these two
methods can get much better performance than GEMM-
based ones when the kernel, feature maps and batch sizes
are large. The experimental results with the convolutional
layers in popular CNNs further demonstrate the conclusion
above.

Keywords
CNNs, Strided Convolutions, FFT, ARMv8, Parallel Algo-
rithm

1. INTRODUCTION
Convolutional Neural Networks (CNNs) are the most pop-

ular neural networks models in many fields. Prior works
have demonstrated that the computation of the convolu-
tional layers dominates the total overhead of CNNs. There-
fore, it is essential for improving the performance of CNNs to
optimize convolution operations on the specified hardware
platforms.

∗This research work was supported by the National Natural
Science Foundation of China under grant (No. 62002365),
and the National Key Research and Development Program
of China (No. 2018YFB0204301).
†Corresponding author: wangqinglin.thu@gmail.com

Copyright is held by author/owner(s).

The classic algorithms for implementing convolutions in-
clude matrix multiplication algorithm, Winograd fast algo-
rithm and Fast Fourier Transform (FFT) fast algorithm.
FFT fast algorithm is often the first choice for high-performance
implementations of convolutions with large kernel, feature
maps and batch sizes because of its superior characteristics.
Unfortunately, current implementations of FFT-based fast
algorithm only work for unit-strided convolutions with stride
as 1, and cannot be directly applied to strided convolutions
with a stride size of greater than 1.

While GPUs and other accelerators are the most pop-
ular platforms in deep learning fields, many factors have
impelled the use of CPUs for accelerating deep learning ap-
plications [1]. For example, CPUs are still one of the most
feasible platforms in leading data and super computing cen-
ters, and CPU-based deep learning tasks can further amor-
tize their CPU-based investments. However, it’s necessary
for getting high performance to carefully match the archi-
tectural characteristics of CPUs and those of deep learning
applications, including CNNs. In this paper, we introduce
rearrangement- and sampling-based methods to utilize FFT
fast algorithm for unit-strided convolutions to produce the
results of strided convolutions. And we presented the details
of the parallelized implementations of these two methods on
ARMv8-based CPUs, which are the main computing nodes
of the prototype Tianhe-3 cluster [2]. To the best of our
knowledge, this is the first work which studies FFT fast al-
gorithm for strided convolutions on ARMv8 architecture.

2. METHODOLOGY AND RESULTS
In order to get FFT-based methods for strided convolu-

tions, we must firstly convert the strided convolutions to
unit-strided convolutions. One method for converting is that
strided convolutions with a stride size of s are equivalently
rearranged into s× s unit-strided convolutions with smaller
input feature maps and kernels. The other method is that
the strided convolutions are considered as a downsampling
on the output feature maps of unit-strided convolutions with
the same input feature maps and kernels.

The origin implementation of the rearrangement-based
method for strided convolutions is shown in Algorithm 1,
and it consists of four steps. When the stride size is s, the
rearrangement generates s2 unit-strided convolutions. The
specific methods of rearrangement are shown in [5].

The sampling-based method processes a common strided
convolution in four steps, as shown in Algorithm 2. Com-
pared to unit-strided convolutions, only the sampling step is



Algorithm 1: Rearrangement-based FFT algorithm
for Strided Convolutions.
input : I, K
output: OS

1 Transform I to Dr via Rearrangement and FFT
2 Transform K to Gr via Rearrangement and FFT ∗

3 Zr = Dr ×Gr

4 Transform Zr to OS via FFT−1

added into the fourth step: the first step is regarding strided
convolution as unit-strided convolution with the same other
parameters; the second step is calculating the unit-strided
convolution by FFT; the last is getting results of strided
convolution from sampling the results of the unit-strided
convolution.

Algorithm 2: Sampling-based FFT algorithm for
Strided Convolutions.
input : I, K
output: OS

1 Transform I to De via FFT
2 Transform K to Ge via FFT ∗

3 Ze = De ×Ge

4 Transform Ze to OS via FFT−1 and Sampling

In simplicity, both rearrangement- and sampling-based
methods still consist of four steps: input transformation,
kernel transformation, element-wise complex multiplications,
and output transformation. Different from the transforma-
tions in unit-strided convolutions, these three transforma-
tions maybe not only include FFT operations, but also in-
volve rearrangement or sampling operations. In order to
achieve high performance on ARMv8 Architectures, both
rearrangement- and sampling-based methods adopt the pro-
posed optimizations in [3, 4], including the combination of
scattering in transformations and packing in complex ma-
trix multiplications, multi-level blocking, and NUMA-aware
parallelization, etc.

Besides designing these two methods, we also analyze the
arithmetic complexities of these two methods and compare
with the direct method. The arithmetic complexities and
the way to obtain them can refer to [5].

For implementing rearrangement, there are two methods:
one is to rearrange the entire matrix directly, the other is to
rearrange a certain part of the entire matrix according to de-
mand. The former method requires a lot of temporary stor-
age space and takes a lot of time. And this method not only
increases a large amount of memory access, but has a neg-
ative impact on the efficiency of the operation to a certain
extent as well. The latter method requires very little tem-
porary storage space, and it takes very little time. Hence,
we choose to implement the latter method. In our imple-
mentation, we rearrange a certain part of the entire matrix
as needed. For example, when s=2 and the FFT tile size is
8×8, a 16×16 tile is directly obtained from the specified po-
sition of the entire matrix for rearrangement and rearranged

into four tiles with size 8×8. This rearrangement method
greatly reduces the amount of memory access and combines
multiple matrix multiplications into one matrix multiplica-
tion, and brings certain performance improvements to the
convolution operation.

Compared to FFT-based unit-strided convolutions, only
the output transformations are different in the sampling-
based method. We optimize the output transformations the
same as the input transformation of rearrangement-based
method. In other words, only the sampled results are stored
back into the memory other than the whole tensor so that
the memory accesses are significantly decreased.

In the experiment, we performed our implementations
on Phytium ARMv8-based FT-2000plus 64-core processors,
then analyzed the experimental results. The strided con-
volutional layers from popular networks (Overfeat, DQN,
Resnet, DCGAN, All-CNN) are further used to test the rel-
ative performance of our two FFT-based strided convolution
algorithms and two GEMM-based implementations. The
stride size of all convolutional layers is 2.

On the layers with large input feature map and kernel
sizes, our two implementations achieved better performance
than MXNet-GEMM. Among them, Rea obtained the max-
imum speedup of 24.8 times relative to Caffe-GEMM and
17.7 relative to MXNet-GEMM. For Samp, its maximum
speedup of 23.8 times was achieved relative to Caffe-GEMM
and 10.9 relative to MXNet-GEMM. In summary, we got the
following conclusions: our two FFT-based fast implementa-
tions for strided convolutions can get much better perfor-
mance than GEMM-based implementations on the popular
convolutional layers with large input feature maps, kernel
and mini-batch sizes; and the rearrangement-based method
can often outperform the sampling-based method in most
cases.

3. REFERENCES
[1] S. Mittal, P. Rajput, and S. Subramoney, “A survey of

deep learning on cpus: Opportunities and
co-optimizations.” IEEE Transactions on Neural
Networks, pp. 1–21, 2021.

[2] X. You, H. Yang, Z. Luan, Y. Liu, and D. Qian,
“Performance evaluation and analysis of linear algebra
kernels in the prototype tianhe-3 cluster,” Asian
Conference on Supercomputing Frontiers, pp. 86–105,
2019.

[3] Q. Wang, D. Li, X. Huang, S. Shen, S. Mei, and J. Liu,
“Optimizing fft-based convolution on armv8 multi-core
cpus,” in European Conference on Parallel Processing,
2020, pp. 248–262.

[4] X. Huang, Q. Wang, S. Lu, R. Hao, S. Mei, and J. Liu,
“Numa-aware fft-based convolution on armv8
many-core cpus.” 2021 IEEE International Symposium
on Parallel and Distributed Processing with
Applications, 2021.

[5] X. Huang, Q. Wang, S. Lu, R. Hao, S. Mei, and J. Liu,
“Evaluating fft-based algorithms for strided
convolutions on armv8 architectures,” Performance

Evaluation, vol. 152, p. 102248, 2021.


