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ABSTRACT
We consider a bipartite network consisting of job schedulers and

parallel servers. Jobs arrive at the schedulers following stochastic

processes with unknown arrival rates, and get routed to the servers,

which execute the jobs with unknown service rates. The jobs are

elastic, as their “size”, i.e., the amount of service needed for their

completion, is determined by the schedulers. After a job finishes

execution, some utility is obtained where the utility value depends

on the job’s size through some underlying concave utility function.

We consider the setting where the utility functions are unknown

apriori, while a noisy observation of the utility value of each job

is obtained upon its completion. Our goal is to design a policy

that makes job-size and routing decisions to maximize the total

utility obtained by the end of the time horizon 𝑇 . We measure the

performance of a policy by regret, i.e., the gap between the expected

utility obtained under the policy and that under the optimal policy.

We first establish an upper bound on the regret of a generic policy,

that consists of the cumulative difference in utility between the job-

size decisions of the policy and the solution to a static optimization

problem, and the total backlog of unfinished jobs at the end of the

time horizon.We then propose a policy that simultaneously controls

the cumulative utility difference and backlog of unfinished jobs, and

achieves an order optimal regret of �̃� (
√
𝑇 ). Our policy solves the

elastic job scheduling problem by extending the Stochastic Convex

Bandit Algorithm to handle unknown and stochastic constraints,

and making routing decisions based on the Join-the-Shortest-Queue

rule. It also presents a principled approach to extending algorithms

for zeroth-order convex optimization to the settings with unknown

and stochastic constraints.

1 INTRODUCTION
Job scheduling is a class of problems that study schedule construc-

tion and resource allocation to jobs over a set of machines to opti-

mize for various performance objectives. In many job scheduling

applications, the jobs to be scheduled are elastic, that is, the arriv-
ing jobs do not have a pre-determined size or duration but instead

their “sizes" are determined by the system scheduler [1, 2], and the

utility gained from job completion depends on the “allocated" job

size [3, 4]. A typical example is training tasks for machine learning

models. The training process of many machine learning models

(e.g. deep neural network) involves iterative procedures such as

gradient descent [5, 6]. The model’s performance resulting from

the training (i.e., utility of the job) depends on the number of itera-

tions completed (i.e., size of the job) [7]. Thus, it is possible to take

advantage of such elasticity to dynamically determine the sizes of

incoming jobs to achieve considerable gain in terms of the overall

performance, as described in [8, 9].

An important element in the scheduling of elastic jobs is the jobs’

utility functions, i.e., the underlying relationship between the job

size and the corresponding utility. Such utility functions are usually

non-decreasing with respect to the job size, and are (approximately)

concave, which reflects, for example, the observation that model

performance increases with more training time while the marginal

gain in performance diminishes with training time [10]. Moreover,

the utility functions are often unknown apriori, but function values

corresponding to job-size decisions can be observed. Again, using

machine learning training as an example, the training curve is

typically unknown in advance, but the model performance of a

certain training time can be observed after a corresponding training

task is completed [11]. While monotonicity and concavity have

often been utilized to design scheduling algorithms with provable

guarantees [3, 4], the unknown nature of the utility function has

been overlooked by most works in the literature, which assume the

utility functions to be known beforehand.

In this paper, we study the problem of elastic job scheduling with

unknown utility functions. We consider a discrete-time system of

a bipartite network with 𝐾 job schedulers and a set 𝑆 of parallel

servers. There are 𝐾 classes of jobs, with jobs of each class arriving

at their corresponding job scheduler according to a discrete-time

stochastic process with mean rate 𝜆𝑘 . Each class is associated with

some unknown underlying utility function 𝑓𝑘 . At every time 𝑡 , each

job scheduler 𝑘 decides for each incoming job 𝑗 , the job size 𝑥 𝑗 and

its designated server, and then routes the job to the queue of its

designated server. After a job 𝑗 of class 𝑘 finishes its service at its

designated server, we obtain a utility of 𝑓𝑘 (𝑥 𝑗 ) and receive a noisy

observation of the function value 𝑓𝑘 (𝑥 𝑗 ) + 𝜖 𝑗 , where 𝜖 𝑗 is a zero-
mean noise and assumed to be independent for different jobs. The

goal is to design a policy that makes job-size and routing (choice

of designated server) decisions based on observed information, in

order to maximize the total utility obtained from jobs completed

by the end of the time horizon 𝑇 . We adopt regret, which is equal

to the difference between the utility obtained by the optimal policy

and that of our policy, as the performance metric and propose a

policy with order-optimal regret.

2 MODEL AND PROBLEM FORMULATION
Consider a discrete-time system with a set of job schedulers and a

set of parallel servers that form a bipartite network. We use 𝑈 =

{𝑢1, . . . , 𝑢𝐾 } to denote the set of schedulers and 𝑆 = {𝑠1, . . . , 𝑠𝑀 }
to denote the set of servers. Each scheduler 𝑢𝑘 is connected to

a subset 𝑆𝑢𝑘 ⊆ 𝑆 of servers. Each server has a buffer that stores

the jobs to be processed. There are 𝐾 classes of elastic jobs in

the system, where jobs of class 𝑘 arrive at scheduler 𝑢𝑘 and are

sent to a server in 𝑆𝑢𝑘 for execution. At each time slot 𝑡 , a set

𝐴𝑘 (𝑡) of class 𝑘 jobs with |𝐴𝑘 (𝑡) | = 𝑎𝑘 (𝑡) arrive at scheduler 𝑢𝑘 .
For each job 𝑗 , its corresponding scheduler determines its size

𝑥 𝑗 ∈ [0, 𝐵], which is the workload it will add to the server and

can be interpreted as its resource requirement. The scheduler then

sends job 𝑗 to the buffer of a server 𝑠 𝑗 ∈ 𝑆𝑢𝑘 for execution, which

we will refer to as 𝑗 ’s designated server. Server 𝑠𝑚 ’s service rate
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at time 𝑡 is denoted by 𝑐𝑚 (𝑡). Each server executes the jobs in a

non-preemptive fashion. We assume that for each 𝑘 , 𝑎𝑘 (𝑡)′𝑠 form a

sequence of i.i.d. bounded positive integer random variables, and

for each 𝑚, 𝑐𝑚 (𝑡)’s is a sequence of i.i.d. bounded non-negative

random variables. We assume, E[𝑎𝑘 (𝑡)] = 𝜆𝑘 , E[𝑐𝑚 (𝑡)] = 𝜇𝑚 and

1 ≤ 𝑎𝑘 (𝑡), 𝜆𝑘 , 𝑐𝑚 (𝑡), 𝜇𝑚 ≤ 𝐶 . We will refer to the jobs’ arrival rates

𝜆𝑘 ’s and the servers’ service rates 𝑐𝑚 ’s, as network statistics. In
this work, we consider the setting where the network statistics are

unknown, but the realizations of arrivals and service are observable.

Each class 𝑘 is associated with some underlying utility function

𝑓𝑘 that characterizes the relationship between the size and the utility

value obtained from jobs of class 𝑘 . The underlying utility functions

are unknown, but we can receive noisy zeroth-order feedback on

the utility functions. Specifically, after the server finishes executing

a job of size 𝑥 of class 𝑘 , we observe 𝑓𝑘 (𝑥) + 𝜖 and obtain a utility

of 𝑓𝑘 (𝑥), where 𝜖 is a zero-mean bounded random noise. The noise

values of different jobs are independent. We assume that for each

job class 𝑘 , its underlying utility function 𝑓𝑘 is monotonically non-

decreasing, concave, and Lipschitz-continuous.

We study a finite-horizon elastic job scheduling problem. Given

a time horizon 𝑇 , we seek a scheduling policy that determines the

size of arriving jobs and their designated servers such that the total

utility obtained from the jobs that are completed in 𝑇 time slots is

maximized. Let Π∗
be the set of all policies, including the ones that

know the underlying utility functions and network statistics. For

a policy 𝜋 , let𝑈 (𝜋,𝑇 ) be the total utility obtained under policy 𝜋 ,

which is defined as the sum of utility obtained from jobs that have

been completed by the end of the time horizon𝑇 . Note that𝑈 (𝜋,𝑇 )
is a random variable, the randomness of which comes from job

arrivals, service rates, noisy utility observations and the (possible)

inherent randomness in the scheduling policy 𝜋 . Instead of directly

using𝑈 (𝜋,𝑇 ), we adopt the notion of regret as the measure of the

quality of scheduling policies, which is defined as

𝑅(𝜋,𝑇 ) = sup

𝜋∗∈Π∗
E[𝑈 (𝜋∗,𝑇 )] − E[𝑈 (𝜋,𝑇 )] .

3 MAIN RESULTS
Consider the following optimization problem P where Λ is the

stability region of the network:

P : max

{𝑥𝑘 }

𝐾∑
𝑘=1

𝜆𝑘 𝑓𝑘 (𝑥𝑘 ) (1)

s.t. (𝑥1, . . . , 𝑥𝐾 ) ∈ Λ, (2)

𝑥𝑘 ∈ [0, 𝐵], ∀𝑘. (3)

Intuitively, the optimization problem characterizes the job sched-

uling problem with full information in steady state. The decision

variables {𝑥𝑘 } can be interpreted as the steady-state size of jobs of

class 𝑘 . As the objective function of P is concave while the feasibil-

ity region is a convex set, it follows that P is a convex optimization

problem.

Our first theorem establishes that the expected utility of any

policy in Π∗
is upper-bounded by the optimal value of the P times

the time horizon 𝑇 .

Theorem 1. sup𝜋∗∈Π∗ E[𝑈 (𝜋∗,𝑇 )] ≤ 𝑇 ·𝑂𝑃𝑇 (P).

Based on theorem 1, we can essentially transform the elastic job

scheduling problem to a convex optimization problem with (zeroth-

order) bandit feedback. The state-of-art algorithm for such problems

is the Stochastic Convex Bandit Algorithm (SCBA) proposed in [12].

However, since our problem has stochastic constraints, i.e. the set

Λ involves unknown parameters associated with the statistics of

stochastic processes, SCBA cannot be directly applied. To address

this challenge, we first construct an equivalent formulation of P,

˜P : max

𝒙
𝐹 (𝒙) :=

𝐾∑
𝑘=1

𝜆𝑘 𝑓𝑘 (𝑥𝑘 ) −𝐶 (𝐿 + 1)Δ(𝒙,Λ)

s.t. 𝑥𝑘 ∈ [0, 𝐵], ∀𝑘,

where Δ(𝒙,Λ) denotes the 𝑙1 distance of 𝒙 to the set Λ. ˜P does not

involve stochastic constraints and can be shown to be equivalent to

P. However, we do not have unbiased observations of the objective

function of
˜P, which was essential to SCBA. We thus further pro-

pose a procedure that utilizes observations available in the setting of

the elastic job scheduling problem to construct confidence intervals

around the true utility values, which can play essentially the same

role in SCBA. Combined with the confidence interval construction

procedure, we can extend SCBA to solve the elastic job scheduling

problem and achieves the order-optimal �̃� (
√
𝑇 )-regret.

Theorem 2. There exists a policy that achieves �̃� (
√
𝑇 )-regret for

the elastic job scheduling problem.
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