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ABSTRACT
Cooperative game theory deals with systems where players want

to cooperate to improve their payoffs. But players may choose coali-

tions in a non-cooperative manner, leading to a coalition-formation

game. We consider such a game with several players (willing to

cooperate) and a possible adamant player (unwilling to cooperate)

involved in resource-sharing. Here, the strategy of a player is the

set of players with whom it wants to form a coalition. Given a

strategy profile, an appropriate partition of coalitions is formed;

players in each coalition maximize their collective utilities leading

to a non-cooperative resource-sharing game among the coalitions,

the (unique) utilities at the resulting equilibrium are shared via

Shapley-value; these shares define the utilities of players for the

given strategy profile in the coalition-formation game. We also

consider the utilitarian solution to derive the price of anarchy.
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1 INTRODUCTION
Resource sharing problem is a well-known problem that aims to

find an optimal allocation of shared resources. Wireless networks

existing in the same region compete to obtain larger spectrum

shares to cater for ever-growing traffic demands. It is well known

that online auctions [9] can be used to achieve optimal resource

allocations. These auctions majorly use a ‘proportional allocation

algorithm’ (Kelly’s mechanism [12]) which is also considered in a

variety of other contexts; e.g., [13] considers real-time performance

in time-shared operating systems, [6] considers rate allocation

for communication networks, [8] considers resource allocation in

wireless network slicing, etc. In this mechanism ([12]), the resource

allocated to any player is proportional to its bid and inversely

proportional to the weighted sum of bids of all players, with the

weights representing the influence factors.

We also consider Kelly’s mechanism, but, with very important

differentiating features: i) possibility of cooperation among the
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willing players; and, ii) the possible presence of an adamant player,

not interested in cooperation. For example, most of the literature

related to spectrum auctions utilising Kelly’s mechanism, considers

non-cooperative players [3, 9]. As mentioned in [9], it would be

interesting to see if the agents can buy spectrum together and

divide the allocated spectrum amicably. However, one cannot rule

out the existence of players who are not interested in this kind of

collaborations, and these form the adamant player of our paper.
Majority of the analysis related to cooperative games discuss the

emergence of grand coalition as a successful partition but one can

findmany example scenarios, in which a partition of strict coalitions

(subsets) of 𝑁 might emerge at some appropriate equilibrium. Thus

in this paper, we consider a relevant aspect for investigation: when
and which subset of willing players find it beneficial to collaborate. We

consider such a study using ‘non-cooperative coalition formation

games’.

Many applications can be modelled using this framework, e.g.,

spectrum allocation [9], cloud computing [14], network slicing [8],

allocation of advertisement space [7, 11], market share [10], etc.

2 PROBLEM DESCRIPTION
Consider a system with (𝑛 + 1) players involved in a resource

sharing game (RSG). Let 𝑁 = {0, 𝑁𝐶 }, 𝑁𝐶 := {1, 2, · · · , 𝑛} denote
the set of players (willing to cooperate) along with an adamant

player indexed by 0. The 𝑛 players in 𝑁𝐶 are willing to cooperate

with each other if they can obtain higher individual share while

the adamant player is not interested in cooperation. The utility

of players is proportional to their actions which also includes a

proportional cost. Thus, when players choose respective actions

(𝑎0, 𝑎1, · · · , 𝑎𝑛), the utility of player 𝑖 equals

𝜑𝑖 =
𝜆𝑖𝑎𝑖∑𝑛
𝑗=0

𝜆 𝑗𝑎 𝑗
− 𝛾𝑎𝑖 ∀ 𝑖 ∈ 𝑁, (1)

where 𝛾 represents the cost factor, 𝜆𝑖 represents the influence factor

of 𝑖𝑡ℎ player and 𝑎𝑖 represents the action of 𝑖𝑡ℎ player.

When the players are looking for opportunities to form coalitions

and work together; each player proposes a strategy which is the

subset of players with whom it wants to form a coalition [1]; thus,

𝑥𝑖 ⊆ 𝑁𝐶 is a strategy of player 𝑖 . Given a strategy profile x of

all players in 𝑁𝐶 , set/collection(s) of coalitions emerges (which

satisfies certain rules, given in [4]); say P(x) = {𝑆0, 𝑆1, · · · , 𝑆𝑘 }
represents the partition of 𝑁 into different coalitions where 𝑆0={0}
denotes the adamant player; further, multiple partitions can emerge

from a strategy profile. The players in coalition 𝑆𝑖 choose their

actions together and hence the utility of a coalition is given by:

𝜑𝑆𝑚 (a𝑚, a−𝑚) =
∑
𝑙 ∈𝑆𝑚 𝜆𝑙𝑎𝑙∑𝑛
𝑙=0

𝜆𝑙𝑎𝑙
− 𝛾

∑︁
𝑙 ∈𝑆𝑚

𝑎𝑙 ; 𝑚 ≥ 0 (2)

where, a𝑚 = {𝑎𝑖 , 𝑖 ∈ 𝑆𝑚}, a−𝑚 = {𝑎𝑖 , 𝑖 ∉ 𝑆𝑚},∀𝑆𝑚 ∈ P,
which is the sum of their individual utilities. The players will now

try to derive maximum utility for their own coalition and hence
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there would again be a non-cooperative game, but now among

coalitions. Thus we have a reduced RSG (for every P) with each

coalition representing one (aggregate) player and the utilities given

by (2); utility of any coalition equals that at the corresponding NE.

Theorem 2.1. The game with utilities {𝜑𝑆𝑚 } as in (2), can have
multiple NE, but the utilities at NE are unique. There exists a𝑀P ≤ 𝑘

such that only the coalitions in J ∗ = {𝑆1, · · · , 𝑆𝑀P } get non-zero
utilities (with ¯𝜆P𝑚 = max𝑖∈𝑆𝑚 𝜆𝑖 arranged in decreasing order). The
unique NE-utility for any𝑚 ≤ 𝑘 is given by ,

𝜑∗
𝑆𝑚

(P) =
(
𝑠P − 𝑀P−1

¯𝜆P𝑚
𝑠P

)
2

1𝑆𝑚∈J∗ , with, (3)

𝑀P
:= max

{
𝑚 ≤ 𝑘 :

𝑚∑︁
𝑖=1

1

¯𝜆P
𝑖

− 𝑚 − 1

¯𝜆P𝑚
> 0

}
, and, 𝑠P =

𝑀P∑︁
𝑚=1

1

¯𝜆P𝑚
. ■

This utility is divided among the members of the coalition using

the well-known Shapley value (computed within the coalition) as

in [5], which simplifies to equal shares for symmetric players. For
the case when a strategy profile x leads to multiple partitions, the

utility𝑈𝑖 (x) of a player is defined to be the minimum utility among

all possible partitions, similar to 𝛼-effectiveness in [2].

Thus, we have a non-cooperative strategic form game. Opposed

to the usual practice of studying the equilibrium strategy profile,

here we are more interested in the equilibrium partitions and hence

in line with the concept of Nash Equilibrium (NE), we define a

solution concept called NE-partitions. We say any partition P that

emerges from a NE strategy profile, is a NE-partition.
However, there is a possibility that a NE strategy profile can lead

to multiple NE-partitions; this has an inherent instability associated

with it. Thus, we propose another solution concept called U-stable
partitions. We say a partition P to be U-stable if the corresponding

natural strategy profile, i.e., 𝑥𝑖 = 𝑆 𝑗 for all 𝑖 ∈ 𝑆 𝑗 ∈ P and for all 𝑗 ,

is a NE. We also consider solutions that optimize social objective

function to derive the Price of Anarchy, 𝑃𝑜𝐴 . The details can be

found in [4].

This is the problem setting and our aim is to study the coali-

tions/partitions that emerge out successfully (at an appropriate

equilibrium), when the players seek opportunities to come together

in a non-cooperative manner.

3 RESULTS
We consider a coalition formation game with players exploring

cooperation opportunities in a non-cooperative manner, where the

utilities of players/coalitions are resultant of a resource sharing

game among coalitions. Following are the important results:

(1) With equal or almost equal (influence) players, no one col-

laborates at equilibrium (if 𝑛 > 4) and coarser partitions

(some players collaborate) emerge at NE for smaller 𝑛; and

the former case does not depend upon adamant player, while

latter case depends. For large 𝑛 (i.e., 𝑛 > 4), refer to Corollary

2 and for smaller 𝑛, see Section 5.7 of [4].

(2) In all cases, the 𝑃𝑜𝐴 increases with 𝑛 (as 𝑂 (𝑛)) and with

increase/decrease in the strength of adamant player (see

Tables 4-6 and 8 in [4]).

(3) Interestingly, none of the partitions are coalitionally stable

for the case with 𝑛 > 4 and equal (influence) players (see [4,

Theorem 12]).

(4) Surprisingly, when the players are significantly different,

every partition is stable against unilateral deviations (see [4,

Theorem 5]).

(5) Grand coalition is the only partition stable against coalitional

deviations (for a special case) with highly asymmetric players

(see [4, Theorem 11]).

(6) Interestingly, grand coalition is the only utilitarian partition

which is also stable against coalitional deviations (for the

same special case mentioned above).

(7) For the system with intermediate players, the number of

U-stable partitions (stable against unilateral deviations) in-

crease as asymmetry (a measure of differences in the influ-

ence factors of various players) increases (see Section 8.4 for

numerical results in [4]).

(8) Lastly and more interestingly, it is the highest and the lowest

capacity players that first find it beneficial to collaborate

(see Theorems 7-9 for theoretical results and Section 8.4 for

numerical results in [4]).
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