
Online Learning for Hierarchical Scheduling to
Support Network Slicing in Cellular Networks

Jianhan Song
ECE Department, UT Austin

Joint work with Gustavo de Veciana and Sanjay Shakkottai

1

Introduction: Network Slicing
❖ Hierarchical framework for resource allocation

➢ Partition network resources into virtual slices
■ Map traffic flows to these slices
■ Slow timescale resource allocation

➢ Use flow-level schedulers within slices
■ Fast timescale resource allocation

❖ Various motivations for slicing
➢ Isolate groups from each other in the presence of traffic load fluctuations,

e.g., Mobile Virtual Network Operator (MVNO)
➢ Group flows with similar Quality of Service (QoS) requirements

2

System Model: Hierarchical Scheduler
Traffic & Service Model
❖ Stochastic Arrivals & Channels

Hierarchical Scheduler HS(w)
❖ Users grouped into s slices
❖ Slice-Level Scheduler: allocate resources to

slices based on weight vector w (e.g. GPS)
❖ Flow-Level Scheduler: pre-selected

opportunistic scheduler (e.g. MaxWeight)
❖

3

How to Allocate Resources Among Slices?
Various Rewards in Applications:
❖ mean-delay
❖ deadline constraints
❖ video quality, etc.

Question: What is the best slice-level allocation with
respect to the current reward model?

Answer: It depends on …
❖ traffic load/service rate
❖ slicing structure
❖ flow-level scheduler deployed, etc.

4

A Bandit Perspective
Our Approach:
❖ Model the problem as a blackbox

optimization:

❖ Use a Bandit (online learning)
⇒ Pull arms w and collect noisy

feedbacks on f(w)

Weight
w

Rate of Rewards
Accrued over Time

f(w)

5

A Bandit Perspective: Challenges
I. In queueing systems, rewards collected are typically queue-dependent

⇒ e.g., delay-related rewards: long queues ←→ low utility
⇒ How to ensure feedback samples are conditionally independent?

➢ Bandit algorithm operating at new timescale -- Queueing Cycles
⇒ Ratio of rewards over cycles to be optimized

II. Infinitely many arms (weight choices) over a continuous set

➢ Optimistic Tree Search on the timescale of random cycles

6

Timescale: Cycles
Describing the system dynamics via cycles:
❖ Each cycle associated with a random length and

reward accrued over its time
❖ Conditional Independence

➢ Length/reward variables are independent
across cycles** for any fix w
⇒ essential for comparison of different arms

** under appropriate assumptions on traffic/reward models

The empirical estimate of the rate of rewards f(w):
→ “cycle reward average / cycle length average” (of w-induced cycles)

7

Cycles & Clipping

Caveat: What if a cycle never ends?
→ weights destabilizing the queueing system might be played during exploration

Clipping Mechanism: discarding packets currently in the system and force the
start of a new cycle when a cycle is “too long”
❖ We define clipping thresholds -- a cycle is clipped if exceeding its threshold
❖ Threshold slowly growing -- logarithmically increasing with cycle index

→ To ensure “stable weights” eventually not getting clipped
❖ “Unstable weights” are penalized when clipped and rarely played 8

Optimistic Tree Search
Find optimal w* via tree search:
❖ Partition the weight space into a binary tree
❖ General idea:

➢ Build an “estimation tree” for the function f (.)
corresponding to via bandit feedback: the deeper
the tree, the better is the estimate

➢ Choose weights from partitions with good estimates
➢ Further grow the tree towards the optimal w*

“Optimistic” -- Under-explored partitions are compensated
(in terms of estimate score) to encourage exploration

9

Algorithm Overview
Our Algorithm -- Cycle-Based HOO with Clipping (CHOOC)
→ Optimistic Tree Search: UCT [KS2006], Zooming [KSU2008], HOO [BMSS2011], etc.
→ CHOOC: modified HOO algorithm adaptive to random queueing cycles & clipping

Algorithm Outline:
❖ Create hierarchical partitions → binary tree
❖ Dynamically assign scores to partitions

è Score = Reward Average / Cycle Average +
Exploration Bonus

❖ Exploit samples from partitions with “best”
score

10

CHOOC Framework Summary
❖ Outer Step: CHOOC
❖ Inner Step: Samples generated by

Hierarchical Scheduler with
random length cycles + clipping

Theoretical Result:
v Regret: loss of rewards with

respect to the optimal choice w*
v Sublinear Regret -- Same order of

HOO despite random cycles and
clipping mechanism

11

Performance Evaluation: Convergence Behavior
❖ Simulation setting: IMT Advanced evaluation guidelines for urban macro-

cell deployments**

❖ 1 base station, 12 users grouped into 2 slices.
❖ Reward type:

➢ Slice 1: Mean-delay
➢ Slice 2: Meeting strict deadlines

❖ Slice-level Scheduler: GPS (Generalized Processor Sharing)
❖ Flow-level Schedulers: Log-Rule (opportunistic scheduler) for both slices

** M Series. “Guidelines for evaluation of radio interface technologies for imt-advanced.”
Report, International Telecommunication Union, 638, 2009. 12

Performance Evaluation: Convergence Behavior

Ground
Truth f(w)

Regret vs
Time

Explored Tree (over Time)
13

Conclusion
❖ Parameterize the hierarchical scheduling model for network slicing by a weight

vector & formulate it as an online blackbox optimization problem

❖ Bandit algorithm for online parameter selection - CHOOC
➢ Optimistic tree search algorithm built from HOO with algorithmic/theoretic

modifications to account for queueing cycles with clippings
➢ Scheduler adaptively choosing weight vectors based on previous bandit

feedback on a timescale of cycles
➢ Verified by several simulation experiments

J. Song, G. de Veciana and S. Shakkottai, Online learning for hierarchical scheduling to support network slicing in
cellular networks, Performance Evaluation (2021), doi: https://doi.org/10.1016/j.peva.2021.102237. 14

https://doi.org/10.1016/j.peva.2021.102237

