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Introduction: Network Slicing
❖ Hierarchical framework for resource allocation

➢ Partition network resources into virtual slices
■ Map traffic flows to these slices
■ Slow timescale resource allocation

➢ Use flow-level schedulers within slices
■ Fast timescale resource allocation

❖ Various motivations for slicing
➢ Isolate groups from each other in the presence of traffic load fluctuations, 

e.g., Mobile Virtual Network Operator (MVNO)
➢ Group flows with similar Quality of Service (QoS) requirements
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System Model: Hierarchical Scheduler 
Traffic & Service Model
❖ Stochastic Arrivals & Channels

Hierarchical Scheduler HS(w)
❖ Users grouped into s slices
❖ Slice-Level Scheduler: allocate resources to 

slices based on weight vector w (e.g. GPS)
❖ Flow-Level Scheduler: pre-selected 

opportunistic scheduler (e.g. MaxWeight)
❖
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How to Allocate Resources Among Slices?
Various Rewards in Applications:
❖ mean-delay
❖ deadline constraints
❖ video quality, etc.

Question: What is the best slice-level allocation with 
respect to the current reward model?

Answer: It depends on …
❖ traffic load/service rate
❖ slicing structure
❖ flow-level scheduler deployed, etc.
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A Bandit Perspective
Our Approach:
❖ Model the problem as a blackbox

optimization:

❖ Use a Bandit (online learning)
⇒ Pull arms w and collect noisy

feedbacks on f(w)

Weight
w

Rate of Rewards 
Accrued over Time

f(w)
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A Bandit Perspective: Challenges
I. In queueing systems, rewards collected are typically queue-dependent

⇒ e.g., delay-related rewards: long queues ←→ low utility  
⇒ How to ensure feedback samples are conditionally independent?

➢ Bandit algorithm operating at new timescale -- Queueing Cycles
⇒ Ratio of rewards over cycles to be optimized

II. Infinitely many arms (weight choices) over a continuous set 

➢ Optimistic Tree Search on the timescale of random cycles
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Timescale: Cycles
Describing the system dynamics via cycles:
❖ Each cycle associated with a random length and 

reward accrued over its time
❖ Conditional Independence

➢ Length/reward variables are independent 
across cycles** for any fix w 
⇒ essential for comparison of different arms

** under appropriate assumptions on traffic/reward models 

The empirical estimate of the rate of rewards f(w):
→ “cycle reward average / cycle length average” (of w-induced cycles)
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Cycles & Clipping

Caveat: What if a cycle never ends?
→ weights destabilizing the queueing system might be played during exploration

Clipping Mechanism: discarding packets currently in the system and force the 
start of a new cycle when a cycle is “too long”
❖ We define clipping thresholds -- a cycle is clipped if exceeding its threshold
❖ Threshold slowly growing -- logarithmically increasing with cycle index

→ To ensure “stable weights” eventually not getting clipped
❖ “Unstable weights” are penalized when clipped and rarely played 8



Optimistic Tree Search
Find optimal w* via tree search:
❖ Partition the weight space into a binary tree
❖ General idea: 

➢ Build an “estimation tree” for the function  f (.) 
corresponding to     via bandit feedback: the deeper 
the tree, the better is the estimate

➢ Choose weights from partitions with good estimates
➢ Further grow the tree towards the optimal w*

“Optimistic” -- Under-explored partitions are compensated 
(in terms of estimate score) to encourage exploration
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Algorithm Overview 
Our Algorithm -- Cycle-Based HOO with Clipping (CHOOC) 
→ Optimistic Tree Search: UCT [KS2006], Zooming [KSU2008], HOO [BMSS2011], etc.
→ CHOOC: modified HOO algorithm adaptive to random queueing cycles & clipping 

Algorithm Outline:
❖ Create hierarchical partitions → binary tree
❖ Dynamically assign scores to partitions

è Score = Reward Average / Cycle Average + 
Exploration Bonus

❖ Exploit samples from partitions with “best” 
score
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CHOOC Framework Summary
❖ Outer Step: CHOOC 
❖ Inner Step: Samples generated by 

Hierarchical Scheduler with 
random length cycles + clipping

Theoretical Result:
v Regret: loss of rewards with 

respect to the optimal choice w*
v Sublinear Regret -- Same order of 

HOO despite random cycles and 
clipping mechanism
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Performance Evaluation: Convergence Behavior
❖ Simulation setting:  IMT Advanced evaluation guidelines for urban macro-

cell deployments**

❖ 1 base station, 12 users grouped into 2 slices.
❖ Reward type: 

➢ Slice 1: Mean-delay
➢ Slice 2: Meeting strict deadlines

❖ Slice-level Scheduler: GPS (Generalized Processor Sharing)
❖ Flow-level Schedulers: Log-Rule (opportunistic scheduler) for both slices

** M Series.  “Guidelines for evaluation of radio interface technologies for imt-advanced.” 
Report, International Telecommunication Union, 638, 2009. 12



Performance Evaluation: Convergence Behavior

Ground 
Truth f(w) 

Regret vs 
Time 

Explored Tree (over Time) 
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Conclusion
❖ Parameterize the hierarchical scheduling model for network slicing by a weight 

vector & formulate it as an online blackbox optimization problem

❖ Bandit algorithm for online parameter selection - CHOOC
➢ Optimistic tree search algorithm built from HOO with algorithmic/theoretic 

modifications to account for queueing cycles with clippings
➢ Scheduler adaptively choosing weight vectors based on previous bandit 

feedback on a timescale of cycles
➢ Verified by several simulation experiments
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