
PIPE 2.7 overview
A Petri net tool for performance modeling and evaluation

Catalina M. Lladó
Computing and Maths Department

Universitat de les Illes Balears
07071 Palma de Mallorca, Spain

cllado@uib.cat

ABSTRACT
The Petri net modeling formalism allows for the convenient
graphical visualization of system models, as well as the mod-
eling and performance analysis of complex stochastic sys-
tems. PIPE is an open source, platform independent tool
for creating and analysing Petri nets including GSPNs (Gen-
eralized Stochastic Petri Nets). It is implemented entirely
in Java and provides an easy-to-use graphical user interface
that allows creating, saving and loading of Petri as well as its
qualitative and quantitative analysis. This paper describes
PIPE 2.7, its main features, including its GUI, modeling
power, and analysis functionality.

Keywords
Petri Nets, Stochastic Modeling, Performance Analysis, Mod-
eling Tools

Copyright is held by author/owner(s).

1. INTRODUCTION
Any developer of computer or communication systems

knows that the most important quality of a system is that
it be functionally correct, i.e. that it exhibits certain be-
havioural, or qualitative properties. Once assured that the
system behaves correctly, it is also important to ensure that
the system meets certain performance-related (or quantita-
tive) objectives. Indeed, while system users often take be-
havioural correctness for granted, it is the latter quantitative
properties which often determine the success of one system
over another [9].

Petri nets are a popular graphical modeling formalism
that can help system designers ensure correctness and per-
formance at design time. While they were originally de-
veloped for the study of qualitative properties of systems
exhibiting concurrency and synchronization, temporal spec-
ifications were introduced about two decades ago in various
forms to Petri Nets in order to also allow for quantitative
analysis.

The focus of the present paper is on the Petri net tool
PIPE (Platform Independent Petri Net Editor) version 2.7.
PIPE is an open source, platform-independent tool for creat-
ing and analysing Generalized Stochastic Petri Nets (GSPNs).
It can be used either in academia since it has a very friendly
interface as well as in industry or research since it provides
specific modules for model import and export from/to other
tools and/or formalism. PIPE [4], is implemented entirely in
Java to secure the platform independence and provides an el-
egant, easy-to-use graphical user interface that allows for the
creation, saving, loading and analysis of Petri nets. PIPE
was initially built at Imperial College London by means of
different student projects. Newer versions with consider-
able improvements on different aspects of the tool function-
ality have been implemented at the Universitat de les Illes
Balears [11, 10] (PIPE 2.7) and Imperial College London [5].

The rest of the paper is organized as follows: we begin
on Section 2 with some background on Petri nets and a
quick description of other related Petri net tools. Section 3
outlines the main features of PIPE 2.7 while Section 4 shows
a case study that uses some of the new features. Finally,
Section 5 reports conclusions.

2. BACKGROUND
This section gives an overview of Petri nets and describes

some other highly used Petri net tools.

2.1 Petri nets
Structurally, a Petri net (PN) is a directed bipartite graph



comprising places and transitions [7]. Places, drawn as cir-
cles, model conditions or objects. Inside the places are to-
kens, drawn as black dots, which represent the specific value
of a condition or object. A particular arrangement of the
tokens across all the places is known as a marking or state.
The system begins in some initial configuration known as
the initial marking. Transitions, drawn as rectangles, are
used to describe events that may modify the system state.
Directed arcs specify the relation between local states and
events in two ways: they indicate the conditions under which
the event can occur, as well as the local state transforma-
tions induced by the event.

The arcs of the graph are classified (with respect to transi-
tions) as input arcs (arrow-headed arcs from places to tran-
sitions), output arcs (arrow-headed arcs from transitions to
places) and inhibitor arcs (circle-headed arcs from places to
transitions). Multiple (input, output, or inhibitor) arcs be-
tween places and transitions are permitted and annotated
with a number specifying their multiplicities.

Figure 1: Firing of a transition

A transition is said to be enabled in a marking if each input
place contains at least as many tokens as the multiplicity
of the input arc and if each inhibitor place contains fewer
tokens than the multiplicity of the inhibitor arc. Enabled
transitions can fire, an atomic action which removes one
token from all of its input places, and generates one token
in each of its output places. Figure 1 shows the state of a
Petri net before and after the firing of a transition. When
arc weights larger than one are used, the number of tokens
required in each input place for the transition enabling and
the number of tokens generated in each output place by the
transitions firing are determined by the weight of the arc
connecting the place and the transition.

As an example, Figure 2 illustrates a PN that models two
processes accessing a shared resource. The processes can be
in one of three possible states: active (doing something that
does not involve the shared resource), requesting the shared
resource and accessing the shared resource. The shared re-
source can be idle or busy. The initial marking shows that
in the initial state both processes are active and the shared
resource is idle.

2.2 Petri nets tools for performance evaluation
Other Petri net based tools that can be found in literature

are:

• GreatSPN 2.0 [2, 1, 8] (GRaphical Editor and Ana-
lyzer for Timed and Stochastic Petri Nets): a soft-
ware package for the modeling, validation, and perfor-
mance evaluation of distributed systems using GSPNs
and their coloured extension: Stochastic Well-formed
Nets.

• TimeNet 4.0 [6, 16] (TIME Net Evaluation Tool): a
tool for the modeling and analysis of stochastic Petri
nets with non-exponentially distributed firing times.

Figure 2: Shared resource GSPN model

• Sharpe [15] (Symbolic Hierarchical Automated Relia-
bility and Performance Evaluator): a tool for speci-
fying and analysing performance, reliability and per-
formability models that allows for different model types.
These include queueing networks, Markov and semi-
Markov reward models as well stochastic Petri nets.

All these tools have the following characteristics in common:
free of charge for academia, somehow maintained, Graphical
User Interface (GUI), modeling of GSPNs, parameter spec-
ification, inhibitor arcs, structural analysis, GSPN steady-
state analysis and simulation: giving all of them at least the
subsequent performance results:

• Steady-state probability distribution of tangible states.

• Average number of tokens at each place.

• Throughput of transitions.

The main features provided by PIPE 2.7 with respect to
rest of the tools are the import/export transformations and
the experimenter, both described in Section 3.

Other important features that are not shared between
these tools are summarized in [11].

3. PIPE 2.7
PIPE is an open source, platform independent tool for cre-

ating and analysing Petri nets including GSPNs. It is imple-
mented entirely in Java to secure the platform independence
and provides an elegant, easy-to-use graphical user interface
that allows creating, saving and loading of Petri nets con-
forming to the PNML interchange format. PIPE also offers
a full suite of analysis modules to check behavioural proper-
ties, produce performance statistics, and some less common
features such as PNs comparison and classification.

PIPE began life in 2002/3 as an MSc Group Project in the
Department of Computing at Imperial College London. Suc-
cessive versions have been implemented and some of them



grown in parallel developed by students of both universi-
ties, Imperial College London [5] and Universitat de les Illes
Balears [11, 10].

In the subsequent subsections the main features of PIPE
2.7 [11, 10, 3] are described.

3.1 The graphical user interface
PIPE was designed with the objective of providing an in-

tuitive, user-friendly tool for editing Petri nets in a easy,
fast and efficient way. Anyone familiar with the standard
drawing UI can pick up and use PIPE without application
specific knowledge. The editor uses standard representation
for the different elements that constitute a Petri net.

Following, the remarkable features of the GUI are de-
scribed:

• It conforms the XML/PNML standard so it could open
and work with existing PNML Petri nets. In addition,
PNML annotations can also be added, so the user can
include text to explain detail of the created models.

• It provides a multiple document interface so that one
can work with multiple nets at the same time, each of
them located on a tabbed pane.

• Users are able to perform tasks using a menu bar, a
toolbar and mouse actions. Shortcuts to all editor op-
tions are also available to allow for quicker actions.

• Actions provided: cut/copy/paste and undo/redo.

• Labels are also supported.

• A zoom functionality is provided to grant the user
greater flexibility and much easier use when working
with large nets.

3.2 Modeling power
The following features can be specified in PIPE 2.7 and

are also used in the analysis modules described later:

• Places, immediate and timed transitions, arcs and to-
kens

• Rate and marking parameters

• Inhibitor arcs

• Capacity restriction of places

• Immediate transition’s priorities

• Server Semantics for timed transitions: Single, multi-
ple and infinite.

3.3 Animation mode/token game
PIPE offers an animator so that the user can manually

experiment with the token game, firing any of the enabled
transitions at each state. The set of enabled transitions is
highlighted and the user chooses which one must be fired.
Animation history is recorded, i.e. all the fired transitions
can be seen on the side of the screen, so from the current
state the animation can be stepped forwards or backwards.
The automatic execution of a random transition in anima-
tion mode is also possible; for this the user specifies the firing
delay and the number of firings.

3.4 Analysis modules
PIPE offers a set of modules to carry out different types of

qualitative and quantitative analysis. These set of available
modules can easily be increased, provided that the defined
interface is followed. The available modules in PIPE are the
following:

• Structural analysis. It has different modules to com-
pute:

– Classification: based on the connectivity between
places and transitions, this module classifies a
Petri net into one or more of the following types:
State Machine, Marked Graph, FC-Nets, EFC-
Nets, SPL-Nets, ESPL Nets.

– Comparison: this module compares two Petri nets
based on their PNML files. It confirms whether
they are (functionally) the same; otherwise, it
works out the differences between them.

– Incidence and marking: this module shows the
incidence matrix and the marking matrix for the
given Petri net.

– Minimal siphons and minimal traps

– Place and transition invariant analysis

– Reachability/coverability graph

• GSPN analysis. This module calculates the following
performance indexes by exploring the state space of
the given Petri net and determining the steady state
solution of the model:

– Average number of tokens

– Utilization of places

– Throughput of timed transitions

– Token probability density

• Simulation: by means of simulation, this module com-
putes the average number of tokens per place along
with the 95% confidence interval for each place in the
net.

• State space analysis: this module builds a tree of all
the reachable markings which is used to determine the
qualitative properties of the given Petri net: bounded-
ness, deadlock-free, and safeness. It also provides the
shortest path to deadlock in the case that there exists
one.

Figure 3 shows the GUI for PIPE 2.7 with the analysis
modules on the left side PIPE 2.7.

3.5 Inport/export and transformations
Nets can be printed or exported into two graphical for-

mats: Postscript and PNG. Moreover, as new features for
the latest versions of PIPE the following inter-operability
functions are also available:

• Nets can also be imported/exported from/to TimeNet
[16] format.

• PMIF2 [12] models can also be imported using Model-
to-model (M2M) transformations [10].



Figure 3: PIPE 2.7 GUI with the analysis modules
on the left side

3.6 Experimenter
PIPE 2.7 also has an experimenter that complains with

the Experiment Schema Extension specification (Ex-SE) [13]
which defines a set of model runs and the output desired
from them providing a way of specifying performance studies
that is independent of a given tool paradigm. It allows for:

• Experiment editing, validation and execution

• Results on xml format and Excel

Figure 4 shows the experimenter interface for PIPE 2.7.

Figure 4: PIPE 2.7 Experimenter interface

4. CASE STUDY
To illustrate the distinguished capabilities of PIPE 2.7,

we present a case study that uses the import transforma-
tion from a QN model specified using PMIF [12]. We use
the Oracle example described in [14], with 3 servers (CPU,
UserThink and Delay). Its PMIF model is imported into
PIPE2 and the PN seen for this example in as shown in
Figure 4, only with some transitions and places moved a lit-
tle bit so the drawing is clearer (the transformation output

leaves some arcs crossed). Performance indexes obtained for
this example are exactly as shown in [14], so it demonstrates
the correct transformation of our tool.

Figure 5: Oracle case study

5. CONCLUSIONS
Petri nets are a popular graphical modeling formalism

that can help system designers ensure correctness and per-
formance at design time. Petri nets theory has been widely
used to implement a variety of modeling and evaluation
tools. In this paper we have focus on PIPE open source
Petri net editor, version 2.7. We have also described PIPE
2.7 main features, including its GUI, modeling power, and
analysis functionality.

We are now working on making the tool available through
a Github license, though currently PIPE 2.7 can be found
on [3]. Some more detailed future work, related for exam-
ple to the PMIF import could be improving the automatic
drawing of the nets (as mentioned in the previous section,
it is not yet right) as well as the import of more complex
QN models, for example, allowing for different scheduling
policies.

6. REFERENCES
[1] The GreatSPN Framework version 3.0.

https://github.com/greatspn/.

[2] GreatSPN GRaphical Editor and Analyzer for Timed
and Stochastic Petri Nets.
http://www.di.unito.it/~greatspn/.

[3] Pipe 2.7 petri net modelling tool: Pipe 2.7.
http://mifs.uib.cat/tools/.

[4] Platform Independent Petri net Editor 2.
http://pipe2.sourceforge.net/.

[5] Platform Independent Petri net Editor 5.
https://sarahtattersall.github.io/PIPE/.

[6] TimeNET TIMEd Net Evaluation Tool.
https://timenet.tu-ilmenau.de/#/.

[7] M Ajmone Marsan, G. Balbo, G. Conte, S. Donatelli,
and G. Franceschinis. Modelling With Generalized
Stochastic Petri Nets. Wiley, 1995.

[8] Souheib Baarir, Marco Beccuti, Davide Cerotti,
Massimiliano De Pierro, Susanna Donatelli, and



Giuliana Franceschinis. The greatspn tool: recent
enhancements. SIGMETRICS Perform. Evaluation
Rev., 36(4):4–9, 2009.

[9] F. Bause and P.S. Kritzinger. Stochastic Petri Nets.
Vieweg, 2nd edition, 2002.

[10] P. Bonet and C.M. Lladó. Importing pmif models into
pipe2 using m2m transformation. In Proc. of the 1st
Joint WOSP/SIPEW International Conference on
Performance Engineering (ICPE), 2012.

[11] P. Bonet, C.M. Lladó, R. Puijaner, and W.J.
Knottenbelt. Pipe v2.5: A petri net tool for
performance modelling. In Proc. 23rd Latin American
Conference on Informatics (CLEI 2007), October
2007.

[12] C. U. Smith, C. M. Lladó, and R. Puigjaner.
Performance Model Interchange Format (PMIF 2): A
comprehensive approach to queueing network model
interoperability. Performance Evaluation, 67(7):548 –
568, 2010.

[13] C. U. Smith, C. M. Lladó, and R. Puigjaner. Model
interchange format specifications for experiments,
output and results. The Computer Journal, 2011.

[14] C.U. Smith and C. Milsap. Software performance
engineering for oracle applications: Measurements and
models. In Proc. Computer Measurement Group, Las
Vegas, NV, December 2008.

[15] K.S. Trivedi and C. Hirel. SHARPE: Symbolic
Hierarchical Automated Reliability and Performance
Evaluator. https://sharpe.pratt.duke.edu/.

[16] A. Zimmermann, M. Knoke, A. Huck, and
G. Hommel. Towards Version 4.0 of TimeNET. In
13th GI/ITG Conference on Measurement, Modeling,
and Evaluation of Computer and Communication
Systems, MMB 2006, pages 477–480, March 2006.


